Advertisement

Dark matter “transporting” mechanism explaining positron excesses

  • Doojin Kim
  • Jong-Chul Park
  • Seodong Shin
Open Access
Regular Article - Theoretical Physics

Abstract

We propose a novel mechanism to explain the positron excesses, which are observed by satellite-based telescopes including PAMELA and AMS-02, in dark matter (DM) scenarios. The novelty behind the proposal is that it makes direct use of DM around the Galactic Center where DM populates most densely, allowing us to avoid tensions from cosmological and astrophysical measurements. The key ingredients of this mechanism include DM annihilation into unstable states with a very long laboratory-frame life time and their “retarded” decay near the Earth to electron-positron pair(s) possibly with other (in)visible particles. We argue that this sort of explanation is not in conflict with relevant constraints from big bang nucleosynthesis and cosmic microwave background. Regarding the resultant positron spectrum, we provide a generalized source term in the associated diffusion equation, which can be readily applicable to any type of two-“stage” DM scenarios wherein production of Standard Model particles occurs at completely different places from those of DM annihilation. We then conduct a data analysis with the recent AMS-02 data to validate our proposal.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    AMS collaboration, M. Aguilar et al., Unlocking the Secrets of the Cosmos: The First Five years of AMS on the International Space Station, (2016).Google Scholar
  2. [2]
    PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].
  3. [3]
    PAMELA collaboration, O. Adriani et al., Cosmic-Ray Positron Energy Spectrum Measured by PAMELA, Phys. Rev. Lett. 111 (2013) 081102 [arXiv:1308.0133] [INSPIRE].
  4. [4]
    Fermi-LAT collaboration, M. Ackermann et al., Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope, Phys. Rev. Lett. 108 (2012) 011103 [arXiv:1109.0521] [INSPIRE].
  5. [5]
    AMS collaboration, M. Aguilar et al., First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV, Phys. Rev. Lett. 110 (2013) 141102 [INSPIRE].
  6. [6]
    AMS collaboration, L. Accardo et al., High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-500 GeV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 113 (2014) 121101 [INSPIRE].
  7. [7]
    D. Hooper, P. Blasi and P.D. Serpico, Pulsars as the Sources of High Energy Cosmic Ray Positrons, JCAP 01 (2009) 025 [arXiv:0810.1527] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Delahaye, K. Kotera and J. Silk, What could we learn from a sharply falling positron fraction?, Astrophys. J. 794 (2014) 168 [arXiv:1404.7546] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    H.-B. Hu, Q. Yuan, B. Wang, C. Fan, J.-L. Zhang and X.-J. Bi, On the e + e excesses and the knee of the cosmic ray spectra — hints of cosmic rays acceleration in young supernova remnants, Astrophys. J. 700 (2009) L170 [arXiv:0901.1520] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Hisano, S. Matsumoto and M.M. Nojiri, Unitarity and higher order corrections in neutralino dark matter annihilation into two photons, Phys. Rev. D 67 (2003) 075014 [hep-ph/0212022] [INSPIRE].
  11. [11]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  12. [12]
    E.J. Chun and J.-C. Park, Dark matter and sub-GeV hidden U(1) in GMSB models, JCAP 02 (2009) 026 [arXiv:0812.0308] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    I.Z. Rothstein, T. Schwetz and J. Zupan, Phenomenology of Dark Matter annihilation into a long-lived intermediate state, JCAP 07 (2009) 018 [arXiv:0903.3116] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Fairbairn and J. Zupan, Dark matter with a late decaying dark partner, JCAP 07 (2009) 001 [arXiv:0810.4147] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Fermi-LAT collaboration, M. Ackermann et al., Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  16. [16]
    Fermi-LAT, MAGIC collaboration, M.L. Ahnen et al., Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies, JCAP 02 (2016) 039 [arXiv:1601.06590] [INSPIRE].
  17. [17]
    DES, Fermi-LAT collaboration, A. Albert et al., Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT, Astrophys. J. 834 (2017) 110 [arXiv:1611.03184] [INSPIRE].
  18. [18]
    J. Lavalle, Q. Yuan, D. Maurin and X.J. Bi, Full Calculation of Clumpiness Boost factors for Antimatter Cosmic Rays in the light of Lambda-CDM N-body simulation results. Abandoning hope in clumpiness enhancement?, Astron. Astrophys. 479 (2008) 427 [arXiv:0709.3634] [INSPIRE].
  19. [19]
    J.M. Cline, A.C. Vincent and W. Xue, Leptons from Dark Matter Annihilation in Milky Way Subhalos, Phys. Rev. D 81 (2010) 083512 [arXiv:1001.5399] [INSPIRE].ADSGoogle Scholar
  20. [20]
    C.-R. Chen, F. Takahashi and T.T. Yanagida, Gamma rays and positrons from a decaying hidden gauge boson, Phys. Lett. B 671 (2009) 71 [arXiv:0809.0792] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Ando and K. Ishiwata, Constraints on decaying dark matter from the extragalactic gamma-ray background, JCAP 05 (2015) 024 [arXiv:1502.02007] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Massari, E. Izaguirre, R. Essig, A. Albert, E. Bloom and G.A. Gómez-Vargas, Strong Optimized Conservative Fermi-LAT Constraints on Dark Matter Models from the Inclusive Photon Spectrum, Phys. Rev. D 91 (2015) 083539 [arXiv:1503.07169] [INSPIRE].ADSGoogle Scholar
  23. [23]
    W. Liu, X.-J. Bi, S.-J. Lin and P.-F. Yin, Constraints on dark matter annihilation and decay from the isotropic gamma-ray background, Chin. Phys. C 41 (2017) 045104 [arXiv:1602.01012] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    K. Agashe, Y. Cui, L. Necib and J. Thaler, (In)direct Detection of Boosted Dark Matter, JCAP 10 (2014) 062 [arXiv:1405.7370] [INSPIRE].
  25. [25]
    J. Berger, Y. Cui and Y. Zhao, Detecting Boosted Dark Matter from the Sun with Large Volume Neutrino Detectors, JCAP 02 (2015) 005 [arXiv:1410.2246] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    K. Kong, G. Mohlabeng and J.-C. Park, Boosted dark matter signals uplifted with self-interaction, Phys. Lett. B 743 (2015) 256 [arXiv:1411.6632] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    H. Alhazmi, K. Kong, G. Mohlabeng and J.-C. Park, Boosted Dark Matter at the Deep Underground Neutrino Experiment, JHEP 04 (2017) 158 [arXiv:1611.09866] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Bélanger and J.-C. Park, Assisted freeze-out, JCAP 03 (2012) 038 [arXiv:1112.4491] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    D. Kim, J.-C. Park and S. Shin, Dark Matter “Collider” from Inelastic Boosted Dark Matter, Phys. Rev. Lett. 119 (2017) 161801 [arXiv:1612.06867] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G.F. Giudice, D. Kim, J.-C. Park and S. Shin, Inelastic Boosted Dark Matter at Direct Detection Experiments, Phys. Lett. B 780 (2018) 543 [arXiv:1712.07126] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    A. Chatterjee et al., Search for Boosted Dark Matter at ProtoDUNE, arXiv:1803.03264 [INSPIRE].
  32. [32]
    V. Poulin and P.D. Serpico, Nonuniversal BBN bounds on electromagnetically decaying particles, Phys. Rev. D 91 (2015) 103007 [arXiv:1503.04852] [INSPIRE].ADSGoogle Scholar
  33. [33]
    V. Poulin, J. Lesgourgues and P.D. Serpico, Cosmological constraints on exotic injection of electromagnetic energy, JCAP 03 (2017) 043 [arXiv:1610.10051] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Fermi-LAT collaboration, M. Ackermann et al., Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements, Astrophys. J. 761 (2012) 91 [arXiv:1205.6474] [INSPIRE].
  35. [35]
    M. Cirelli et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [Erratum ibid. 1210 (2012) E01] [arXiv:1012.4515] [INSPIRE].
  36. [36]
    Y.G. Kim, K.Y. Lee, C.B. Park and S. Shin, Secluded singlet fermionic dark matter driven by the Fermi gamma-ray excess, Phys. Rev. D 93 (2016) 075023 [arXiv:1601.05089] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Kamionkowski and S. Profumo, Early Annihilation and Diffuse Backgrounds in Models of Weakly Interacting Massive Particles in Which the Cross Section for Pair Annihilation Is Enhanced by 1/v, Phys. Rev. Lett. 101 (2008) 261301 [arXiv:0810.3233] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.L. Feng, M. Kaplinghat and H.-B. Yu, Halo Shape and Relic Density Exclusions of Sommerfeld-Enhanced Dark Matter Explanations of Cosmic Ray Excesses, Phys. Rev. Lett. 104 (2010) 151301 [arXiv:0911.0422] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.L. Feng, M. Kaplinghat and H.-B. Yu, Sommerfeld Enhancements for Thermal Relic Dark Matter, Phys. Rev. D 82 (2010) 083525 [arXiv:1005.4678] [INSPIRE].ADSGoogle Scholar
  40. [40]
    X. Chu, S. Kulkarni and P. Salati, Dark matter indirect signals with long-lived mediators, JCAP 11 (2017) 023 [arXiv:1706.08543] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J.F. Navarro, C.S. Frenk and S.D.M. White, The Structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE].
  42. [42]
    J.F. Navarro, C.S. Frenk and S.D.M. White, A Universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].
  43. [43]
    D. Hooper, The Density of Dark Matter in the Galactic Bulge and Implications for Indirect Detection, Phys. Dark Univ. 15 (2017) 53 [arXiv:1608.00003] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    W.S. Cho, D. Kim, K.T. Matchev and M. Park, Probing Resonance Decays to Two Visible and Multiple Invisible Particles, Phys. Rev. Lett. 112 (2014) 211801 [arXiv:1206.1546] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A.W. Strong, I.V. Moskalenko and O. Reimer, Diffuse continuum gamma-rays from the galaxy, Astrophys. J. 537 (2000) 763 [Erratum ibid. 541 (2000) 1109] [astro-ph/9811296] [INSPIRE].
  46. [46]
    F. Donato, N. Fornengo, D. Maurin and P. Salati, Antiprotons in cosmic rays from neutralino annihilation, Phys. Rev. D 69 (2004) 063501 [astro-ph/0306207] [INSPIRE].
  47. [47]
    P. Bandyopadhyay, E.J. Chun and J.-C. Park, Right-handed sneutrino dark matter in U(1) seesaw models and its signatures at the LHC, JHEP 06 (2011) 129 [arXiv:1105.1652] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    J.A. Dror, E. Kuflik and W.H. Ng, Codecaying Dark Matter, Phys. Rev. Lett. 117 (2016) 211801 [arXiv:1607.03110] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Okawa, M. Tanabashi and M. Yamanaka, Relic Abundance in a Secluded Dark Matter Scenario with a Massive Mediator, Phys. Rev. D 95 (2017) 023006 [arXiv:1607.08520] [INSPIRE].ADSGoogle Scholar
  50. [50]
    D. Kim, J.-C. Park and S. Shin, Cosmological aspect of models conceiving the dark matter “transporting” mechanism, in progress.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentCERNGeneva 23Switzerland
  2. 2.Department of PhysicsChungnam National UniversityDaejeonSouth Korea
  3. 3.Department of Physics & IPAPYonsei UniversitySeoulSouth Korea
  4. 4.Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A.

Personalised recommendations