Helicity amplitudes for QCD with massive quarks

Open Access
Regular Article - Theoretical Physics

Abstract

The novel massive spinor-helicity formalism of Arkani-Hamed, Huang and Huang provides an elegant way to calculate scattering amplitudes in quantum chromodynamics for arbitrary quark spin projections. In this note we compute two families of tree-level QCD amplitudes with one massive quark pair and n − 2 gluons. The two cases include all gluons with identical helicity and one opposite-helicity gluon being color-adjacent to one of the quarks. Our results naturally incorporate the previously known amplitudes for both quark spins quantized along one of the gluonic momenta. In the all-multiplicity formulae presented here the spin quantization axes can be tuned at will, which includes the case of the definite-helicity quark states.

Keywords

Perturbative QCD Scattering Amplitudes Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans and T.T. Wu, Single bremsstrahlung processes in gauge theories, Phys. Lett. B 103 (1981) 124 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P. De Causmaecker, R. Gastmans, W. Troost and T.T. Wu, Multiple bremsstrahlung in gauge theories at high-energies. 1. General formalism for quantum electrodynamics, Nucl. Phys. B 206 (1982) 53 [INSPIRE].
  3. [3]
    J.F. Gunion and Z. Kunszt, Improved analytic techniques for tree graph calculations and the \( Ggq\overline{q}\ell \overline{\ell} \) subprocess, Phys. Lett. B 161 (1985) 333 [INSPIRE].
  4. [4]
    R. Kleiss and W.J. Stirling, Spinor techniques for calculating \( p\overline{p}\to {W}^{\pm }/{Z}^0 \) + jets, Nucl. Phys. B 262 (1985) 235 [INSPIRE].
  5. [5]
    Z. Xu, D.-H. Zhang and L. Chang, Helicity amplitudes for multiple bremsstrahlung in massless non-Abelian gauge theories, Nucl. Phys. B 291 (1987) 392 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    R. Gastmans and T.T. Wu, The ubiquitous photon: helicity method for QED and QCD, Int. Ser. Monogr. Phys. 80 (1990) 1 [INSPIRE].Google Scholar
  7. [7]
    L.J. Dixon, Calculating scattering amplitudes efficiently, in QCD and beyond. Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI-95, SLAC-PUB-7106, Boulder CO U.S.A., 4-30 June 1995, p. 539 [hep-ph/9601359] [INSPIRE].
  8. [8]
    R. Kleiss and W.J. Stirling, Cross-sections for the production of an arbitrary number of photons in electron-positron annihilation, Phys. Lett. B 179 (1986) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Dittmaier, Weyl-van der Waerden formalism for helicity amplitudes of massive particles, Phys. Rev. D 59 (1998) 016007 [hep-ph/9805445] [INSPIRE].
  10. [10]
    C. Schwinn and S. Weinzierl, Scalar diagrammatic rules for Born amplitudes in QCD, JHEP 05 (2005) 006 [hep-th/0503015] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    N. Arkani-Hamed, T.-C. Huang and Y.-T. Huang, Scattering amplitudes for all masses and spins, arXiv:1709.04891 [INSPIRE].
  12. [12]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    C. Schwinn and S. Weinzierl, On-shell recursion relations for all Born QCD amplitudes, JHEP 04 (2007) 072 [hep-ph/0703021] [INSPIRE].
  15. [15]
    E.P. Wigner, On unitary representations of the inhomogeneous Lorentz group, Annals Math. 40 (1939) 149.ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    V. Bargmann and E.P. Wigner, Group theoretical discussion of relativistic wave equations, Proc. Nat. Acad. Sci. 34 (1948) 211 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    H. Johansson and A. Ochirov, Pure gravities via color-kinematics duality for fundamental matter, JHEP 11 (2015) 046 [arXiv:1407.4772] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    H. Johansson and A. Ochirov, Color-kinematics duality for QCD amplitudes, JHEP 01 (2016) 170 [arXiv:1507.00332] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron colliders, Nucl. Phys. B 312 (1989) 616 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    L. de la Cruz, A. Kniss and S. Weinzierl, Proof of the fundamental BCJ relations for QCD amplitudes, JHEP 09 (2015) 197 [arXiv:1508.01432] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].
  23. [23]
    N.E.J. Bjerrum-Bohr, J.F. Donoghue and P. Vanhove, On-shell techniques and universal results in quantum gravity, JHEP 02 (2014) 111 [arXiv:1309.0804] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    S.J. Parke and T.R. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett. 56 (1986) 2459 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    N. Arkani-Hamed and J. Kaplan, On tree amplitudes in gauge theory and gravity, JHEP 04 (2008) 076 [arXiv:0801.2385] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    R. Britto and A. Ochirov, On-shell recursion for massive fermion currents, JHEP 01 (2013) 002 [arXiv:1210.1755] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    B. Feng, R. Huang and Y. Jia, Gauge amplitude identities by on-shell recursion relation in S-matrix program, Phys. Lett. B 695 (2011) 350 [arXiv:1004.3417] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    D. Forde and D.A. Kosower, All-multiplicity amplitudes with massive scalars, Phys. Rev. D 73 (2006) 065007 [hep-th/0507292] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    P. Ferrario, G. Rodrigo and P. Talavera, Compact multigluonic scattering amplitudes with heavy scalars and fermions, Phys. Rev. Lett. 96 (2006) 182001 [hep-th/0602043] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    C. Schwinn and S. Weinzierl, SUSY Ward identities for multi-gluon helicity amplitudes with massive quarks, JHEP 03 (2006) 030 [hep-th/0602012] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    N. Craig, H. Elvang, M. Kiermaier and T. Slatyer, Massive amplitudes on the Coulomb branch of N = 4 SYM, JHEP 12 (2011) 097 [arXiv:1104.2050] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    R.H. Boels and C. Schwinn, On-shell supersymmetry for massive multiplets, Phys. Rev. D 84 (2011) 065006 [arXiv:1104.2280] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. Guevara, Holomorphic classical limit for spin effects in gravitational and electromagnetic scattering, arXiv:1706.02314 [INSPIRE].
  34. [34]
    N. Moynihan and J. Murugan, Comments on scattering in massive gravity, vDVZ and BCFW, arXiv:1711.03956 [INSPIRE].
  35. [35]
    N. Christensen and B. Field, The constructive Standard Model: part I, arXiv:1802.00448 [INSPIRE].
  36. [36]
    E. Conde and A. Marzolla, Lorentz constraints on massive three-point amplitudes, JHEP 09 (2016) 041 [arXiv:1601.08113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    E. Conde, E. Joung and K. Mkrtchyan, Spinor-helicity three-point amplitudes from local cubic interactions, JHEP 08 (2016) 040 [arXiv:1605.07402] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    L.M. Brown, Two-component Fermion theory, Phys. Rev. 111 (1958) 957 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    M. Tonin, Quantization of the two-component fermion theory, Nuovo Cim. 14 (1959) 1108.ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    G. Chalmers and W. Siegel, Simplifying algebra in Feynman graphs, part I: spinors, Phys. Rev. D 59 (1999) 045012 [hep-ph/9708251] [INSPIRE].
  41. [41]
    G. Chalmers and W. Siegel, Simplifying algebra in Feynman graphs, part II: spinor helicity from the space-cone, Phys. Rev. D 59 (1999) 045013 [hep-ph/9801220] [INSPIRE].
  42. [42]
    G. Chalmers and W. Siegel, Simplifying algebra in Feynman graphs, part III: massive vectors, Phys. Rev. D 63 (2001) 125027 [hep-th/0101025] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S.D. Badger, E.W.N. Glover, V.V. Khoze and P. Svrček, Recursion relations for gauge theory amplitudes with massive particles, JHEP 07 (2005) 025 [hep-th/0504159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    S.D. Badger, E.W.N. Glover and V.V. Khoze, Recursion relations for gauge theory amplitudes with massive vector bosons and fermions, JHEP 01 (2006) 066 [hep-th/0507161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    K.J. Ozeren and W.J. Stirling, Scattering amplitudes with massive fermions using BCFW recursion, Eur. Phys. J. C 48 (2006) 159 [hep-ph/0603071] [INSPIRE].
  46. [46]
    J.-H. Huang and W. Wang, Multigluon tree amplitudes with a pair of massive fermions, Eur. Phys. J. C 72 (2012) 2050 [arXiv:1204.0068] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J.M. Drummond and J.M. Henn, All tree-level amplitudes in N = 4 SYM, JHEP 04 (2009) 018 [arXiv:0808.2475] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    L.J. Dixon, J.M. Henn, J. Plefka and T. Schuster, All tree-level amplitudes in massless QCD, JHEP 01 (2011) 035 [arXiv:1010.3991] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].
  50. [50]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
  51. [51]
    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75 (2007) 125019 [arXiv:0704.1835] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    R. Britto, E. Buchbinder, F. Cachazo and B. Feng, One-loop amplitudes of gluons in SQCD, Phys. Rev. D 72 (2005) 065012 [hep-ph/0503132] [INSPIRE].
  54. [54]
    C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett. B 645 (2007) 213 [hep-ph/0609191] [INSPIRE].
  55. [55]
    W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [arXiv:0801.2237] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    S. Badger, C. Bronnum-Hansen, F. Buciuni and D. O’Connell, A unitarity compatible approach to one-loop amplitudes with massive fermions, JHEP 06 (2017) 141 [arXiv:1703.05734] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    C. Cheung and D. O’Connell, Amplitudes and spinor-helicity in six dimensions, JHEP 07 (2009) 075 [arXiv:0902.0981] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    M. Dinsdale, M. Ternick and S. Weinzierl, A comparison of efficient methods for the computation of Born gluon amplitudes, JHEP 03 (2006) 056 [hep-ph/0602204] [INSPIRE].
  59. [59]
    S. Badger, B. Biedermann, L. Hackl, J. Plefka, T. Schuster and P. Uwer, Comparing efficient computation methods for massless QCD tree amplitudes: closed analytic formulas versus Berends-Giele recursion, Phys. Rev. D 87 (2013) 034011 [arXiv:1206.2381] [INSPIRE].ADSGoogle Scholar
  60. [60]
    D. Maître and P. Mastrolia, S@M, a mathematica implementation of the spinor-helicity formalism, Comput. Phys. Commun. 179 (2008) 501 [arXiv:0710.5559] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.ETH Zürich, Institut für Theoretische PhysikZürichSwitzerland

Personalised recommendations