Heterotic line bundle models on elliptically fibered Calabi-Yau three-folds

  • Andreas P. Braun
  • Callum R. Brodie
  • Andre Lukas
Open Access
Regular Article - Theoretical Physics

Abstract

We analyze heterotic line bundle models on elliptically fibered Calabi-Yau three-folds over weak Fano bases. In order to facilitate Wilson line breaking to the standard model group, we focus on elliptically fibered three-folds with a second section and a freely-acting involution. Specifically, we consider toric weak Fano surfaces as base manifolds and identify six such manifolds with the required properties. The requisite mathematical tools for the construction of line bundle models on these spaces, including the calculation of line bundle cohomology, are developed. A computer scan leads to more than 400 line bundle models with the right number of families and an SU(5) GUT group which could descend to standard-like models after taking the ℤ2 quotient. A common and surprising feature of these models is the presence of a large number of vector-like states.

Keywords

Flux compactifications Superstring Vacua Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A heterotic standard model, Phys. Lett. B 618 (2005) 252 [hep-th/0501070] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring positive monad bundles and a new heterotic standard model, JHEP 02 (2010) 054 [arXiv:0911.1569] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    V. Braun, P. Candelas, R. Davies and R. Donagi, The MSSM spectrum from (0, 2)-deformations of the heterotic standard embedding, JHEP 05 (2012) 127 [arXiv:1112.1097] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two hundred heterotic standard models on smooth Calabi-Yau threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].ADSGoogle Scholar
  6. [6]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic line bundle standard models, JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory, Commun. Math. Phys. 187 (1997) 679 [hep-th/9701162] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  8. [8]
    L.B. Anderson, A. Constantin, S.-J. Lee and A. Lukas, Hypercharge flux in heterotic compactifications, Phys. Rev. D 91 (2015) 046008 [arXiv:1411.0034] [INSPIRE].ADSGoogle Scholar
  9. [9]
    R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Standard models from heterotic M-theory, Adv. Theor. Math. Phys. 5 (2002) 93 [hep-th/9912208] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    B. Andreas, G. Curio and A. Klemm, Towards the standard model spectrum from elliptic Calabi-Yau, Int. J. Mod. Phys. A 19 (2004) 1987 [hep-th/9903052] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    D.R. Morrison and W. Taylor, Toric bases for 6D F-theory models, Fortsch. Phys. 60 (2012) 1187 [arXiv:1204.0283] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    J. Halverson and W. Taylor, ℙ1 -bundle bases and the prevalence of non-Higgsable structure in 4D F-theory models, JHEP 09 (2015) 086 [arXiv:1506.03204] [INSPIRE].
  13. [13]
    R. Blumenhagen, B. Jurke, T. Rahn and H. Roschy, Cohomology of line bundles: a computational algorithm, J. Math. Phys. 51 (2010) 103525 [arXiv:1003.5217] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
  15. [15]
    L.B. Anderson, A. Constantin, J. Gray, A. Lukas and E. Palti, A comprehensive scan for heterotic SU(5) GUT models, JHEP 01 (2014) 047 [arXiv:1307.4787] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D.R. Morrison and D.S. Park, F-theory and the Mordell-Weil group of elliptically-fibered Calabi-Yau threefolds, JHEP 10 (2012) 128 [arXiv:1208.2695] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    T.W. Grimm and T. Weigand, On abelian gauge symmetries and proton decay in global F-theory GUTs, Phys. Rev. D 82 (2010) 086009 [arXiv:1006.0226] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C. Mayrhofer, E. Palti and T. Weigand, U(1) symmetries in F-theory GUTs with multiple sections, JHEP 03 (2013) 098 [arXiv:1211.6742] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    S. Kobayashi, Differential geometry of vector bundles, Princeton University Press, Princeton U.S.A (1986).Google Scholar
  20. [20]
    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The particle spectrum of heterotic compactifications, JHEP 12 (2004) 054 [hep-th/0405014] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    B. Andreas and G. Curio, Extension bundles and the standard model, JHEP 07 (2007) 053 [hep-th/0703210] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    V. Braun, T.W. Grimm and J. Keitel, Geometric engineering in toric F-theory and GUTs with U(1) gauge factors, JHEP 12 (2013) 069 [arXiv:1306.0577] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
  24. [24]
    S. Lang, Complex analysis, 4th edition, Springer, Germany (1999).CrossRefMATHGoogle Scholar
  25. [25]
    A. Braun, A. Lukas and C. Sun, Discrete symmetries of Calabi-Yau hypersurfaces in toric four-folds, arXiv:1704.07812 [INSPIRE].
  26. [26]
    R. Lazarsfeld, Positivity in algebraic geometry, Springer, Germany (2004).CrossRefMATHGoogle Scholar
  27. [27]
    R. Hartshorne, Algebraic geometry, Springer, Germany (2010).MATHGoogle Scholar
  28. [28]
    W. Barth, Compact complex surfaces, Springer, Germany (2004).CrossRefMATHGoogle Scholar
  29. [29]
    C. Weibel, An introduction to homological algebra, Cambridge University Press, Cambridge U.K. (1994).CrossRefMATHGoogle Scholar
  30. [30]
    R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUTs in type IIB orientifold compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    D. Cox, J. Little and H. Schenck, Toric varieties, Graduate studies in mathematics, American Mathematical Society, U.S.A. (2011).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Andreas P. Braun
    • 1
  • Callum R. Brodie
    • 1
  • Andre Lukas
    • 1
  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.

Personalised recommendations