# Teichmüller TQFT vs. Chern-Simons theory

- 14 Downloads

## Abstract

Teichmüller TQFT is a unitary 3d topological theory whose Hilbert spaces are spanned by Liouville conformal blocks. It is related but not identical to PSL(2, ℝ) Chern-Simons theory. To physicists, it is known in particular in the context of 3d-3d correspondence and also in the holographic description of Virasoro conformal blocks. We propose that this theory can be defined by an analytically-continued Chern-Simons path-integral with an unusual integration cycle. On hyperbolic three-manifolds, this cycle is singled out by the requirement of invertible vielbein. Mathematically, our proposal translates a known conjecture by Andersen and Kashaev into a conjecture about the Kapustin-Witten equations. We further explain that Teichmüller TQFT is dual to complex SL(2, ℂ) Chern-Simons theory at integer level *k* = 1, clarifying some puzzles previously encountered in the 3d-3d correspondence literature. We also present a new simple derivation of complex Chern-Simons theories from the 6d (2,0) theory on a lens space with a transversely-holomorphic foliation.

## Keywords

Chern-Simons Theories Supersymmetric Gauge Theory Topological Field Theories## Notes

**Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]E. Witten,
*Quantum field theory and the Jones polynomial*,*Commun. Math. Phys.***121**(1989) 351 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [2]N. Reshetikhin, V. Turaev,
*Invariants of 3-manifolds via link polynomials and quantum groups*,*Invent. Math.***103**(1991) 547.ADSMathSciNetCrossRefMATHGoogle Scholar - [3]E. Witten,
*Quantization of Chern-Simons gauge theory with complex gauge group*,*Commun. Math. Phys.***137**(1991) 29 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [4]E. Witten, (2 + 1)
*-dimensional gravity as an exactly soluble system*,*Nucl. Phys.***B 311**(1988) 46 [INSPIRE]. - [5]T. Dimofte,
*Perturbative and nonperturbative aspects of complex Chern-Simons theory*,*J. Phys.***A 50**(2017) 443009 [arXiv:1608.02961] [INSPIRE]. - [6]E. Witten,
*Chern-Simons gauge theory as a string theory*,*Prog. Math.***133**(1995) 637 [hep-th/9207094] [INSPIRE].MathSciNetMATHGoogle Scholar - [7]R. Gopakumar and C. Vafa,
*On the gauge theory/geometry correspondence*,*Adv. Theor. Math. Phys.***3**(1999) 1415 [hep-th/9811131] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [8]
- [9]
- [10]H. Ooguri and C. Vafa,
*Knot invariants and topological strings*,*Nucl. Phys.***B 577**(2000) 419 [hep-th/9912123] [INSPIRE]. - [11]M. Dedushenko and E. Witten,
*Some details on the Gopakumar-Vafa and Ooguri-Vafa formulas*,*Adv. Theor. Math. Phys.***20**(2016) 1 [arXiv:1411.7108] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [12]S. Gukov, A.S. Schwarz and C. Vafa,
*Khovanov-Rozansky homology and topological strings*,*Lett. Math. Phys.***74**(2005) 53 [hep-th/0412243] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [13]E. Witten,
*Analytic continuation of Chern-Simons theory*,*AMS/IP Stud. Adv. Math.***50**(2011) 347 [arXiv:1001.2933] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [14]T. Dimofte,
*3d superconformal theories from three-manifolds*, arXiv:1412.7129. - [15]H.L. Verlinde and E.P. Verlinde,
*Conformal field theory and geometric quantization*, IASSNS-HEP-89-58 (1989). - [16]H.L. Verlinde,
*Conformal field theory,*2*D quantum gravity and quantization of Teichmüller space*,*Nucl. Phys.***B 337**(1990) 652 [INSPIRE]. - [17]R.M. Kashaev,
*Quantization of Teichmueller spaces and the quantum dilogarithm*,*Lett. Math. Phys.***43**(1998) 105 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [18]L. Chekhov and V.V. Fock,
*Quantum Teichmüller space*,*Theor. Math. Phys.***120**(1999) 1245 [*Teor. Mat. Fiz.***120**(1999) 511] [math/9908165] [INSPIRE]. - [19]J. Teschner,
*Quantization of the Hitchin moduli spaces, Liouville theory and the geometric Langlands correspondence I*,*Adv. Theor. Math. Phys.***15**(2011) 471 [arXiv:1005.2846] [INSPIRE]. - [20]T. Dimofte and S. Gukov,
*Chern-Simons Theory and S-duality*,*JHEP***05**(2013) 109 [arXiv:1106.4550] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [21]J. Teschner,
*An analog of a modular functor from quantized Teichmüller theory*, math/0510174 [INSPIRE]. - [22]B. Bakalov and A. Kirillov Jr.,
*Lectures on tensor categories and modular functors*, AMS University Lecture Series volume 21, American Mathematical Society, U.S.A. (2001).Google Scholar - [23]J. Ellegaard Andersen and R. Kashaev,
*A TQFT from quantum Teichmüller theory*,*Commun. Math. Phys.***330**(2014) 887 [arXiv:1109.6295] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [24]J. Ellegaard Andersen and R. Kashaev,
*A new formulation of the Teichmüller TQFT*, arXiv:1305.4291 [INSPIRE]. - [25]T. Dimofte,
*Quantum Riemann surfaces in Chern-Simons theory*,*Adv. Theor. Math. Phys.***17**(2013) 479 [arXiv:1102.4847] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [26]T. Dimofte, D. Gaiotto and S. Gukov,
*Gauge theories labelled by three-manifolds*,*Commun. Math. Phys.***325**(2014) 367 [arXiv:1108.4389] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [27]T. Dimofte,
*Complex Chern-Simons theory at level*k*via the*3*d-*3*d correspondence*,*Commun. Math. Phys.***339**(2015) 619 [arXiv:1409.0857] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [28]
- [29]Y. Terashima and M. Yamazaki, ℝ
*Chern-Simons, Liouville and gauge theory on duality walls*,*JHEP***08**(2011) 135 [arXiv:1103.5748] [INSPIRE]. - [30]L.F. Alday, D. Gaiotto and Y. Tachikawa,
*Liouville correlation functions from four-dimensional gauge theories*,*Lett. Math. Phys.***91**(2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [31]N. Nekrasov and E. Witten,
*The*Ω*deformation, branes, integrability and Liouville theory*,*JHEP***09**(2010) 092 [arXiv:1002.0888] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [32]J. Yagi, 3D
*TQFT from*6*D SCFT*,*JHEP***08**(2013) 017 [arXiv:1305.0291] [INSPIRE].ADSCrossRefGoogle Scholar - [33]S. Lee and M. Yamazaki, 3
*D Chern-Simons theory from M*5*-branes*,*JHEP***12**(2013) 035 [arXiv:1305.2429] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [34]C. Cordova and D.L. Jafferis,
*Complex Chern-Simons from M*5*-branes on the squashed three-sphere*,*JHEP***11**(2017) 119 [arXiv:1305.2891] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [35]C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski,
*Supersymmetric field theories on three-manifolds*,*JHEP***05**(2013) 017 [arXiv:1212.3388] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [36]C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski,
*The geometry of supersymmetric partition functions*,*JHEP***01**(2014) 124 [arXiv:1309.5876] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [37]C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski,
*From rigid supersymmetry to twisted holomorphic theories*,*Phys. Rev.***D 90**(2014) 085006 [arXiv:1407.2598] [INSPIRE]. - [38]C. Beem, T. Dimofte and S. Pasquetti,
*Holomorphic blocks in three dimensions*,*JHEP***12**(2014) 177 [arXiv:1211.1986] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [39]S. Gukov and E. Witten,
*Branes and quantization*,*Adv. Theor. Math. Phys.***13**(2009) 1445 [arXiv:0809.0305] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [40]D. Gaiotto and E. Witten,
*Supersymmetric boundary conditions in N*= 4*Super Yang-Mills theory*,*J. Statist. Phys.***135**(2009) 789 [arXiv:0804.2902] [INSPIRE]. - [41]
- [42]A. Kapustin and E. Witten,
*Electric-magnetic duality and the geometric Langlands program*,*Commun. Num. Theor. Phys.***1**(2007) 1 [hep-th/0604151] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [43]D. Gaiotto and E. Witten,
*Knot invariants from four-dimensional gauge theory*,*Adv. Theor. Math. Phys.***16**(2012) 935 [arXiv:1106.4789] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [44]D. Gang, N. Kim and S. Lee,
*Holography of*3*d-*3*d correspondence at Large N*,*JHEP***04**(2015) 091 [arXiv:1409.6206] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [45]A. Reznikov,
*Rationality of secondary classes*,*J. Diff. Geom.***43**(1996) 674.MathSciNetCrossRefMATHGoogle Scholar - [46]J.-B. Bae, D. Gang and J. Lee, 3
*d*\( \mathcal{N}=2 \)*minimal SCFTs from wrapped M*5*-branes*,*JHEP***08**(2017) 118 [arXiv:1610.09259] [INSPIRE]. - [47]S. Gukov, M. Mariño and P. Putrov,
*Resurgence in complex Chern-Simons theory*, arXiv:1605.07615 [INSPIRE]. - [48]E. Hijano, P. Kraus and R. Snively,
*Worldline approach to semi-classical conformal blocks*,*JHEP***07**(2015) 131 [arXiv:1501.02260] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [49]E. Hijano, P. Kraus, E. Perlmutter and R. Snively,
*Semiclassical Virasoro blocks from AdS*_{3}*gravity*,*JHEP***12**(2015) 077 [arXiv:1508.04987] [INSPIRE]. - [50]D. Harlow, J. Maltz and E. Witten,
*Analytic continuation of Liouville theory*,*JHEP***12**(2011) 071 [arXiv:1108.4417] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [51]N.J. Hitchin,
*The selfduality equations on a Riemann surface*,*Proc. Lond. Math. Soc.***55**(1987) 59 [INSPIRE].CrossRefMATHGoogle Scholar - [52]J. Teschner,
*From Liouville theory to the quantum geometry of Riemann surfaces*, in the proceedings of the*International Congress on Mathematical physics (ICMP 2003)*, July 28-August 2, Lisbon, Portugal (2003), hep-th/0308031 [INSPIRE]. - [53]L.D. Faddeev,
*Discrete Heisenberg-Weyl group and modular group*,*Lett. Math. Phys.***34**(1995) 249 [hep-th/9504111] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [54]D.-E. Diaconescu,
*D-branes, monopoles and Nahm equations*,*Nucl. Phys.***B 503**(1997) 220 [hep-th/9608163] [INSPIRE]. - [55]N.R. Constable, R.C. Myers and O. Tafjord,
*The noncommutative bion core*,*Phys. Rev.***D 61**(2000) 106009 [hep-th/9911136] [INSPIRE].ADSMathSciNetGoogle Scholar - [56]S. He and R. Mazzeo,
*The extended bogomolny equations*, to appear.Google Scholar - [57]
- [58]K. Corlette,
*Flat G-bundles with canonical metrics*,*J. Diff. Geom.***28**(1988) 361.MathSciNetCrossRefMATHGoogle Scholar - [59]S. Gukov, P. Putrov and C. Vafa,
*Fivebranes and 3-manifold homology*,*JHEP***07**(2017) 071 [arXiv:1602.05302] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [60]V. Fock and A. Goncharov,
*Moduli spaces of local systems and higher Teichmüller theory*,*Publ. Math. Inst. Hautes É tudes Sci.***103**(2006) 1.CrossRefMATHGoogle Scholar - [61]M. Henningson,
*Boundary conditions for geometric-Langlands twisted N*= 4*supersymmetric Yang-Mills theory*,*Phys. Rev.***D 86**(2012) 085003 [arXiv:1106.3845] [INSPIRE]. - [62]D. Gaiotto and E. Witten,
*Janus configurations, Chern-Simons couplings, and the theta-angle in N*= 4*Super Yang-Mills theory*,*JHEP***06**(2010) 097 [arXiv:0804.2907] [INSPIRE]. - [63]D. Gaiotto and E. Witten,
*S-duality of boundary conditions in N*= 4*super Yang-Mills theory*,*Adv. Theor. Math. Phys.***13**(2009) 721 [arXiv:0807.3720] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [64]C.H. Taubes,
*Compactness theorems for*SL(2;*C*)*generalizations of the 4-dimensional anti-self dual equations, Part I*, arXiv:1307.6447 [INSPIRE]. - [65]S. Gukov, D. Pei, P. Putrov and C. Vafa,
*BPS spectra and 3-manifold invariants*, arXiv:1701.06567 [INSPIRE]. - [66]V. Mikhaylov,
*Analytic torsion,*3D*mirror symmetry and supergroup Chern-Simons theories*, arXiv:1505.03130 [INSPIRE]. - [67]
- [68]S. Garoufalidis and R. Kashaev,
*From state integrals to q-series*,*Math. Res. Lett.***24**(2017) 781 [arXiv:1304.2705] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [69]S. Garoufalidis and R. Kashaev,
*Evaluation of state integrals at rational points*,*Commun. Number Theory Phys.***9**(2015) 549.MathSciNetCrossRefMATHGoogle Scholar - [70]G. Festuccia and N. Seiberg,
*Rigid supersymmetric theories in curved superspace*,*JHEP***06**(2011) 114 [arXiv:1105.0689] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [71]T.T. Dumitrescu,
*An introduction to supersymmetric field theories in curved space*,*J. Phys.***A 50**(2017) 443005 [arXiv:1608.02957] [INSPIRE]. - [72]Y. Imamura and D. Yokoyama,
*N*= 2*supersymmetric theories on squashed three-sphere*,*Phys. Rev.***D 85**(2012) 025015 [arXiv:1109.4734] [INSPIRE]. - [73]V. Pestun,
*Localization for*\( \mathcal{N}=2 \)*supersymmetric gauge theories in four dimensions*, arXiv:1412.7134. - [74]S. Kawai,
*The symplectic nature of the space of projective connections in Riemann surfaces*,*Math. Ann.***305**(1996) 161.MathSciNetCrossRefGoogle Scholar - [75]A. Balasubramanian and J. Teschner,
*Supersymmetric field theories and geometric Langlands: The other side of the coin*, talk given at*String Math 2016*, June 27-July 2, Paris, France (2016), arXiv:1702.06499 [INSPIRE]. - [76]V. Pestun,
*Localization of gauge theory on a four-sphere and supersymmetric Wilson loops*,*Commun. Math. Phys.***313**(2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [77]S. Carlip,
*Conformal field theory,*(2 + 1)*-dimensional gravity and the BTZ black hole*,*Class. Quant. Grav.***22**(2005) R85 [gr-qc/0503022] [INSPIRE]. - [78]D. Sullivan,
*On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions*, in*Riemann Surfaces and Related Topics*, I. Kra and B. Maskit eds., Princeton University Press, Princeton, U.S.A. (1981).Google Scholar - [79]C. McMullen,
*Riemann surfaces and the geometrization of 3-manifolds*,*Bull. Amer. Math. Soc. (N.S.)***27**(1992) 207.Google Scholar - [80]D. Birmingham, I. Sachs and S. Sen,
*Exact results for the BTZ black hole*,*Int. J. Mod. Phys.***D 10**(2001) 833 [hep-th/0102155] [INSPIRE]. - [81]
- [82]T. Dimofte, D. Gaiotto and R. van der Veen,
*RG domain walls and hybrid triangulations*,*Adv. Theor. Math. Phys.***19**(2015) 137 [arXiv:1304.6721] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [83]D. Gaiotto, G.W. Moore and A. Neitzke,
*Wall-crossing, Hitchin systems and the WKB approximation*, arXiv:0907.3987 [INSPIRE]. - [84]G.W. Moore and N. Seiberg,
*Classical and quantum conformal field theory*,*Commun. Math. Phys.***123**(1989) 177 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [85]J. Teschner,
*Quantization of moduli spaces of flat connections and Liouville theory*, talk given at the*nternational Congress of Mathematicians (ICM 2014)*, August 13-21, Seoul, Korea (2014), arXiv:1405.0359 [INSPIRE]. - [86]T. Dimofte, D. Gaiotto and S. Gukov, 3
*-manifolds and*3*D indices*,*Adv. Theor. Math. Phys.***17**(2013) 975 [arXiv:1112.5179] [INSPIRE].