Improved positivity bounds and massive gravity

  • Claudia de Rham
  • Scott Melville
  • Andrew J. Tolley
Open Access
Regular Article - Theoretical Physics


Theories such as massive Galileons and massive gravity can satisfy the presently known improved positivity bounds provided they are weakly coupled. We discuss the form of the EFT Lagrangian for a weakly coupled UV completion of massive gravity which closely parallels the massive Galileon, and perform the power counting of corrections to the scattering amplitude and the positivity bounds. The Vainshtein mechanism which is central to the phenomenological viability of massive gravity is entirely consistent with weak coupling since it is classical in nature. We highlight that the only implication of the improved positivity constraints is that the EFT cutoff is lower than previous assumed, and discuss the observable implications, emphasizing that these bounds are not capable of ruling out the model contrary to previous statements in the literature.


Classical Theories of Gravity Effective Field Theories Cosmology of Theories beyond the SM Global Symmetries 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli Action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].
  3. [3]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    C. de Rham, Massive Gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].CrossRefzbMATHGoogle Scholar
  5. [5]
    S.F. Hassan and R.A. Rosen, Resolving the Ghost Problem in non-Linear Massive Gravity, Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].
  7. [7]
    C. de Rham, Massive gravity from Dirichlet boundary conditions, Phys. Lett. B 688 (2010) 137 [arXiv:0910.5474] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    C. de Rham and G. Gabadadze, Selftuned Massive Spin-2, Phys. Lett. B 693 (2010) 334 [arXiv:1006.4367] [INSPIRE].
  9. [9]
    G. Tasinato, K. Koyama and G. Niz, Vector instabilities and self-acceleration in the decoupling limit of massive gravity, Phys. Rev. D 87 (2013) 064029 [arXiv:1210.3627] [INSPIRE].
  10. [10]
    N.A. Ondo and A.J. Tolley, Complete Decoupling Limit of Ghost-free Massive Gravity, JHEP 11 (2013) 059 [arXiv:1307.4769] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    G. Gabadadze, K. Hinterbichler, D. Pirtskhalava and Y. Shang, Potential for general relativity and its geometry, Phys. Rev. D 88 (2013) 084003 [arXiv:1307.2245] [INSPIRE].
  12. [12]
    A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    L. Keltner and A.J. Tolley, UV properties of Galileons: Spectral Densities, arXiv:1502.05706 [INSPIRE].
  14. [14]
    S.B. Giddings and M. Lippert, Precursors, black holes and a locality bound, Phys. Rev. D 65 (2002) 024006 [hep-th/0103231] [INSPIRE].
  15. [15]
    S.B. Giddings, Locality in quantum gravity and string theory, Phys. Rev. D 74 (2006) 106006 [hep-th/0604072] [INSPIRE].
  16. [16]
    S.B. Giddings and R.A. Porto, The Gravitational S-matrix, Phys. Rev. D 81 (2010) 025002 [arXiv:0908.0004] [INSPIRE].
  17. [17]
    G. Dvali, G.F. Giudice, C. Gomez and A. Kehagias, UV-Completion by Classicalization, JHEP 08 (2011) 108 [arXiv:1010.1415] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    G. Dvali and D. Pirtskhalava, Dynamics of Unitarization by Classicalization, Phys. Lett. B 699 (2011) 78 [arXiv:1011.0114] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Dvali, Classicalize or not to Classicalize?, arXiv:1101.2661 [INSPIRE].
  20. [20]
    G. Dvali, C. Gomez and A. Kehagias, Classicalization of Gravitons and Goldstones, JHEP 11 (2011) 070 [arXiv:1103.5963] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    G. Dvali, A. Franca and C. Gomez, Road Signs for UV-Completion, arXiv:1204.6388 [INSPIRE].
  22. [22]
    G. Gabadadze, Scale-up of Λ3 : Massive gravity with a higher strong interaction scale, Phys. Rev. D 96 (2017) 084018 [arXiv:1707.01739] [INSPIRE].
  23. [23]
    C. de Rham and R.H. Ribeiro, Riding on irrelevant operators, JCAP 11 (2014) 016 [arXiv:1405.5213] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  24. [24]
    B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Beyond Amplitudes’ Positivity and the Fate of Massive Gravity, arXiv:1710.02539 [INSPIRE].
  25. [25]
    C. Cheung and G.N. Remmen, Positive Signs in Massive Gravity, JHEP 04 (2016) 002 [arXiv:1601.04068] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    A.I. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett. B 39 (1972) 393 [INSPIRE].
  27. [27]
    C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Massive Galileon Positivity Bounds, JHEP 09 (2017) 072 [arXiv:1702.08577] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    B. Bellazzini, Softness and amplitudes’ positivity for spinning particles, JHEP 02 (2017) 034 [arXiv:1605.06111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    K. Hinterbichler, A. Joyce and R.A. Rosen, Massive Spin-2 Scattering and Asymptotic Superluminality, JHEP 03 (2018) 051 [arXiv:1708.05716] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Bonifacio, K. Hinterbichler and R.A. Rosen, Positivity constraints for pseudolinear massive spin-2 and vector Galileons, Phys. Rev. D 94 (2016) 104001 [arXiv:1607.06084] [INSPIRE].
  31. [31]
    C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity bounds for scalar field theories, Phys. Rev. D 96 (2017) 081702 [arXiv:1702.06134] [INSPIRE].
  32. [32]
    M.R. Pennington and J. Portoles, The chiral Lagrangian parameters, ℓ 1 , ℓ 2 , are determined by the ρ-resonance, Phys. Lett. B 344 (1995) 399 [hep-ph/9409426] [INSPIRE].
  33. [33]
    L. Vecchi, Causal versus analytic constraints on anomalous quartic gauge couplings, JHEP 11 (2007) 054 [arXiv:0704.1900] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A.V. Manohar and V. Mateu, Dispersion Relation Bounds for ππ Scattering, Phys. Rev. D 77 (2008) 094019 [arXiv:0801.3222] [INSPIRE].
  35. [35]
    A. Nicolis, R. Rattazzi and E. Trincherini, Energy’s and amplitudes’ positivity, JHEP 05 (2010) 095 [Erratum ibid. 11 (2011) 128] [arXiv:0912.4258] [INSPIRE].
  36. [36]
    B. Bellazzini, L. Martucci and R. Torre, Symmetries, Sum Rules and Constraints on Effective Field Theories, JHEP 09 (2014) 100 [arXiv:1405.2960] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, UV complete me: Positivity Bounds for Particles with Spin, JHEP 03 (2018) 011 [arXiv:1706.02712] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    C.P. Burgess and D. London, Uses and abuses of effective Lagrangians, Phys. Rev. D 48 (1993) 4337 [hep-ph/9203216] [INSPIRE].
  39. [39]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  40. [40]
    D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of Strong Coupling for LHC Searches, JHEP 11 (2016) 141 [arXiv:1603.03064] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Burrage, C. de Rham, D. Seery and A.J. Tolley, Galileon inflation, JCAP 01 (2011) 014 [arXiv:1009.2497] [INSPIRE].
  42. [42]
    L. Berezhiani, G. Chkareuli, C. de Rham, G. Gabadadze and A.J. Tolley, Mixed Galileons and Spherically Symmetric Solutions, Class. Quant. Grav. 30 (2013) 184003 [arXiv:1305.0271] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Claudia de Rham
    • 1
    • 2
  • Scott Melville
    • 1
  • Andrew J. Tolley
    • 1
    • 2
  1. 1.Theoretical Physics, Blackett LaboratoryImperial CollegeLondonU.K.
  2. 2.CERCA, Department of PhysicsCase Western Reserve UniversityClevelandU.S.A.

Personalised recommendations