Advertisement

Holographic turbulence in a large number of dimensions

  • Moshe Rozali
  • Evyatar Sabag
  • Amos Yarom
Open Access
Regular Article - Theoretical Physics

Abstract

We consider relativistic hydrodynamics in the limit where the number of spatial dimensions is very large. We show that under certain restrictions, the resulting equations of motion simplify significantly. Holographic theories in a large number of dimensions satisfy the aforementioned restrictions and their dynamics are captured by hydrodynamics with a naturally truncated derivative expansion. Using analytic and numerical techniques we analyze two and three-dimensional turbulent flow of such fluids in various regimes and its relation to geometric data.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Adams, P.M. Chesler and H. Liu, Holographic turbulence, Phys. Rev. Lett. 112 (2014) 151602 [arXiv:1307.7267] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S.R. Green, F. Carrasco and L. Lehner, Holographic Path to the Turbulent Side of Gravity, Phys. Rev. X 4 (2014) 011001 [arXiv:1309.7940] [INSPIRE].
  4. [4]
    C. Eling and Y. Oz, The Anomalous Scaling Exponents of Turbulence in General Dimension from Random Geometry, JHEP 09 (2015) 150 [arXiv:1502.03069] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    R. Emparan, R. Suzuki and K. Tanabe, The large D limit of General Relativity, JHEP 06 (2013) 009 [arXiv:1302.6382] [INSPIRE].
  6. [6]
    R. Emparan, R. Suzuki and K. Tanabe, Instability of rotating black holes: large D analysis, JHEP 06 (2014) 106 [arXiv:1402.6215] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    R. Emparan, R. Suzuki and K. Tanabe, Decoupling and non-decoupling dynamics of large D black holes, JHEP 07 (2014) 113 [arXiv:1406.1258] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Emparan, R. Suzuki and K. Tanabe, Quasinormal modes of (Anti-)de Sitter black holes in the 1/D expansion, JHEP 04 (2015) 085 [arXiv:1502.02820] [INSPIRE].
  9. [9]
    R. Emparan, T. Shiromizu, R. Suzuki, K. Tanabe and T. Tanaka, Effective theory of Black Holes in the 1/D expansion, JHEP 06 (2015) 159 [arXiv:1504.06489] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    S. Bhattacharyya, A. De, S. Minwalla, R. Mohan and A. Saha, A membrane paradigm at large D, JHEP 04 (2016) 076 [arXiv:1504.06613] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    R. Emparan, R. Suzuki and K. Tanabe, Evolution and End Point of the Black String Instability: Large D Solution, Phys. Rev. Lett. 115 (2015) 091102 [arXiv:1506.06772] [INSPIRE].
  12. [12]
    S. Bhattacharyya, M. Mandlik, S. Minwalla and S. Thakur, A Charged Membrane Paradigm at Large D, JHEP 04 (2016) 128 [arXiv:1511.03432] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    T. Andrade, S.A. Gentle and B. Withers, Drude in D major, JHEP 06 (2016) 134 [arXiv:1512.06263] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    R. Emparan, K. Izumi, R. Luna, R. Suzuki and K. Tanabe, Hydro-elastic Complementarity in Black Branes at large D, JHEP 06 (2016) 117 [arXiv:1602.05752] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    C.P. Herzog, M. Spillane and A. Yarom, The holographic dual of a Riemann problem in a large number of dimensions, JHEP 08 (2016) 120 [arXiv:1605.01404] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S. Bhattacharyya et al., Currents and Radiation from the large D Black Hole Membrane, JHEP 05 (2017) 098 [arXiv:1611.09310] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    Y. Dandekar, A. De, S. Mazumdar, S. Minwalla and A. Saha, The large D black hole Membrane Paradigm at first subleading order, JHEP 12 (2016) 113 [arXiv:1607.06475] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    Y. Dandekar, S. Mazumdar, S. Minwalla and A. Saha, Unstable ‘black branes’ from scaled membranes at large D, JHEP 12 (2016) 140 [arXiv:1609.02912] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S. Bhattacharyya, P. Biswas, B. Chakrabarty, Y. Dandekar and A. Dinda, The large D black hole dynamics in AdS/dS backgrounds, arXiv:1704.06076 [INSPIRE].
  20. [20]
    A.M. García-García and A. Romero-Bermúdez, Conductivity and entanglement entropy of high dimensional holographic superconductors, JHEP 09 (2015) 033 [arXiv:1502.03616] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  21. [21]
    U. Miyamoto, Non-linear perturbation of black branes at large D, JHEP 06 (2017) 033 [arXiv:1705.00486] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    M. Haack and A. Yarom, Nonlinear viscous hydrodynamics in various dimensions using AdS/CFT, JHEP 10 (2008) 063 [arXiv:0806.4602] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, Conformal Nonlinear Fluid Dynamics from Gravity in Arbitrary Dimensions, JHEP 12 (2008) 116 [arXiv:0809.4272] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    M. Haack and A. Yarom, Universality of second order transport coefficients from the gauge-string duality, Nucl. Phys. B 813 (2009) 140 [arXiv:0811.1794] [INSPIRE].
  25. [25]
    I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    S. Grozdanov and N. Kaplis, Constructing higher-order hydrodynamics: The third order, Phys. Rev. D 93 (2016) 066012 [arXiv:1507.02461] [INSPIRE].
  27. [27]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P. Davidson, Turbulence: an introduction for scientists and engineers, Oxford University Press (2015).Google Scholar
  29. [29]
    S. Chen, D.D. Holm, L.G. Margolin and R. Zhang, Direct numerical simulations of the navier-stokes alpha model, Physica D 133 (1999) 66.Google Scholar
  30. [30]
    H.S. Kang, S. Chester and C. Meneveau, Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation, J. Fluid Mech. 480 (2003) 129.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    R.H. Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids 10 (1967) 1417.ADSCrossRefGoogle Scholar
  32. [32]
    C.E. Leith, Diffusion approximation for two-dimensional turbulence, Phys. Fluids 11 (1968) 671.ADSCrossRefGoogle Scholar
  33. [33]
    G.K. Batchelor, Computation of the energy spectrum in homogeneous two-dimensional turbulence, Phys. Fluids 12 (1969) II-233.Google Scholar
  34. [34]
    M.A. Rutgers, Forced 2D turbulence: experimental evidence of simultaneous inverse energy and forward enstrophy cascades, Phys. Rev. Lett. 81 (1998) 2244.Google Scholar
  35. [35]
    S. Kida and Y. Murakami, Kolmogorov similarity in freely decaying turbulence, Phys. Fluids 30 (1987)2030.Google Scholar
  36. [36]
    T.J. Hughes, L. Mazzei, A.A. Oberai and A.A. Wray, The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence, Phys. Fluids 13 (2001) 505.ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    A.W. Vreman, B.J. Geurts, J.G.M. Kuerten and P.J. Zandbergen, A finite volume approach to large eddy simulation of compressible, homogeneous, isotropic, decaying turbulence, Int. J. Numer. Methods Fluids 15 (1992) 799.ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    H. Clercx and G. van Heijst, Energy spectra for decaying 2D turbulence in a bounded domain, Phys. Rev. Lett. 85 (2000) 306.Google Scholar
  39. [39]
    H. Clercx, A. Nielsen, D. Torres and E. Coutsias, Two-dimensional turbulence in square and circular domains with no-slip walls, Eur. J. Mech. B 20 (2001) 557.Google Scholar
  40. [40]
    P. Santangelo, R. Benzi and B. Legras, The generation of vortices in high-resolution, two-dimensional decaying turbulence and the influence of initial conditions on the breaking of self-similarity, Phys. Fluids A 1 (1989) 1027.Google Scholar
  41. [41]
    A. Bracco, J. McWilliams, G. Murante, A. Provenzale and J. Weiss, Revisiting freely decaying two-dimensional turbulence at millennial resolution, Phys. Fluids 12 (2000) 2931.ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    P.D. Mininni and A. Pouquet, Inverse cascade behavior in freely decaying two-dimensional fluid turbulence, Phys. Rev. E 87 (2013) 033002.Google Scholar
  43. [43]
    C.E. Wayne, Vortices and two-dimensional fluid motion, Notices Amer. Math. Soc. 58 (2011) 10.Google Scholar
  44. [44]
    J.R. Westernacher-Schneider, L. Lehner and Y. Oz, Scaling Relations in Two-Dimensional Relativistic Hydrodynamic Turbulence, JHEP 12 (2015) 067 [arXiv:1510.00736] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    C. Eling, I. Fouxon and Y. Oz, The Incompressible Navier-Stokes Equations From Membrane Dynamics, Phys. Lett. B 680 (2009) 496 [arXiv:0905.3638] [INSPIRE].
  46. [46]
    C. Eling, I. Fouxon and Y. Oz, Gravity and a Geometrization of Turbulence: An Intriguing Correspondence, arXiv:1004.2632 [INSPIRE].
  47. [47]
    C. Eling and Y. Oz, Holographic Vorticity in the Fluid/Gravity Correspondence, JHEP 11 (2013) 079 [arXiv:1308.1651] [INSPIRE].
  48. [48]
    J.R. Westernacher-Schneider and L. Lehner, Numerical Measurements of Scaling Relations in Two-Dimensional Conformal Fluid Turbulence, JHEP 08 (2017) 027 [arXiv:1706.07480] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    R. Emparan and K. Tanabe, Holographic superconductivity in the large D expansion, JHEP 01 (2014) 145 [arXiv:1312.1108] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    G. Falkovich, I. Fouxon and Y. Oz, New relations for correlation functions in Navier-Stokes turbulence, J. Fluid Mech. 644 (2010) 465 [arXiv:0909.3404] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  2. 2.Department of PhysicsTechnionIsrael

Personalised recommendations