Hairy black holes and duality in an extended supergravity model

  • Andrés Anabalón
  • Dumitru Astefanesei
  • Antonio Gallerati
  • Mario Trigiante
Open Access
Regular Article - Theoretical Physics
  • 10 Downloads

Abstract

We consider a D = 4, \( \mathcal{N}=2 \) gauged supergravity with an electromagnetic Fayet-Iliopoulos term. We restrict to the uncharged, single dilaton consistent truncation and point out that the bulk Lagrangian is self-dual under electromagnetic duality. Within this truncation, we construct two families of exact hairy black hole solutions, which are asymptotically AdS4. When a duality transformation is applied on these solutions, they are mapped to two other inequivalent families of hairy black hole solutions. The mixed boundary conditions of the scalar field correspond to adding a triple-trace operator to the dual field theory action. We also show that this truncation contains all the consistent single dilaton truncations of gauged \( \mathcal{N}=8 \) supergravity with a possible ω-deformation.

Keywords

Supergravity Models AdS-CFT Correspondence Black Holes Black Holes in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M. Trigiante, Gauged Supergravities, Phys. Rept. 680 (2017) 1 [arXiv:1609.09745] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    A. Ishibashi and R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. 3 Anti-de Sitter space-time, Class. Quant. Grav. 21 (2004) 2981 [hep-th/0402184] [INSPIRE].
  6. [6]
    T. Hertog and G.T. Horowitz, Designer gravity and field theory effective potentials, Phys. Rev. Lett. 94 (2005) 221301 [hep-th/0412169] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
  8. [8]
    M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Black holes and asymptotics of 2 + 1 gravity coupled to a scalar field, Phys. Rev. D 65 (2002) 104007 [hep-th/0201170] [INSPIRE].
  9. [9]
    C. Martinez, R. Troncoso and J. Zanelli, Exact black hole solution with a minimally coupled scalar field, Phys. Rev. D 70 (2004) 084035 [hep-th/0406111] [INSPIRE].
  10. [10]
    T. Hertog and K. Maeda, Black holes with scalar hair and asymptotics in N = 8 supergravity, JHEP 07 (2004) 051 [hep-th/0404261] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Anabalón, Exact Black Holes and Universality in the Backreaction of non-linear σ-models with a potential in (A)dS 4, JHEP 06 (2012) 127 [arXiv:1204.2720] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Acena, A. Anabalón and D. Astefanesei, Exact hairy black brane solutions in AdS 5 and holographic RG flows, Phys. Rev. D 87 (2013) 124033 [arXiv:1211.6126] [INSPIRE].
  13. [13]
    A. Anabalón, D. Astefanesei and R. Mann, Exact asymptotically flat charged hairy black holes with a dilaton potential, JHEP 10 (2013) 184 [arXiv:1308.1693] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Anabalón and D. Astefanesei, On attractor mechanism of AdS 4 black holes, Phys. Lett. B 727 (2013) 568 [arXiv:1309.5863] [INSPIRE].
  15. [15]
    A. Aceña, A. Anabalón, D. Astefanesei and R. Mann, Hairy planar black holes in higher dimensions, JHEP 01 (2014) 153 [arXiv:1311.6065] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    X.-H. Feng, H. Lü and Q. Wen, Scalar Hairy Black Holes in General Dimensions, Phys. Rev. D 89 (2014) 044014 [arXiv:1312.5374] [INSPIRE].
  17. [17]
    Q. Wen, Strategy to Construct Exact Solutions in Einstein-Scalar Gravities, Phys. Rev. D 92 (2015) 104002 [arXiv:1501.02829] [INSPIRE].
  18. [18]
    F. Faedo, D. Klemm and M. Nozawa, Hairy black holes in N = 2 gauged supergravity, JHEP 11 (2015) 045 [arXiv:1505.02986] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    Z.-Y. Fan and H. Lü, Static and Dynamic Hairy Planar Black Holes, Phys. Rev. D 92 (2015) 064008 [arXiv:1505.03557] [INSPIRE].
  20. [20]
    O. Kichakova, J. Kunz, E. Radu and Y. Shnir, Static black holes with axial symmetry in asymptotically AdS 4 spacetime, Phys. Rev. D 93 (2016) 044037 [arXiv:1510.08935] [INSPIRE].
  21. [21]
    T. Hertog, Towards a Novel no-hair Theorem for Black Holes, Phys. Rev. D 74 (2006) 084008 [gr-qc/0608075] [INSPIRE].
  22. [22]
    T. Hertog and K. Maeda, Stability and thermodynamics of AdS black holes with scalar hair, Phys. Rev. D 71 (2005) 024001 [hep-th/0409314] [INSPIRE].
  23. [23]
    A. Anabalón, D. Astefanesei and C. Martinez, Mass of asymptotically anti-de Sitter hairy spacetimes, Phys. Rev. D 91 (2015) 041501 [arXiv:1407.3296] [INSPIRE].
  24. [24]
    A. Anabalón, D. Astefanesei, D. Choque and C. Martinez, Trace Anomaly and Counterterms in Designer Gravity, JHEP 03 (2016) 117 [arXiv:1511.08759] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    H. Lü, C.N. Pope and Q. Wen, Thermodynamics of AdS Black Holes in Einstein-Scalar Gravity, JHEP 03 (2015) 165 [arXiv:1408.1514] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  26. [26]
    T. Hertog and S. Hollands, Stability in designer gravity, Class. Quant. Grav. 22 (2005) 5323 [hep-th/0508181] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    A.J. Amsel, T. Hertog, S. Hollands and D. Marolf, A Tale of two superpotentials: Stability and instability in designer gravity, Phys. Rev. D 75 (2007) 084008 [Erratum ibid. D 77 (2008) 049903] [hep-th/0701038] [INSPIRE].
  28. [28]
    T. Faulkner, G.T. Horowitz and M.M. Roberts, New stability results for Einstein scalar gravity, Class. Quant. Grav. 27 (2010) 205007 [arXiv:1006.2387] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    D. Núñez, H. Quevedo and D. Sudarsky, Black holes have no short hair, Phys. Rev. Lett. 76 (1996) 571 [gr-qc/9601020] [INSPIRE].
  30. [30]
    A. Anabalón and D. Astefanesei, Black holes in ω-defomed gauged N = 8 supergravity, Phys. Lett. B 732 (2014) 137 [arXiv:1311.7459] [INSPIRE].
  31. [31]
    H. Lü, Y. Pang and C.N. Pope, An ω deformation of gauged STU supergravity, JHEP 04 (2014) 175 [arXiv:1402.1994] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].
  33. [33]
    B. de Wit and H. Nicolai, N = 8 Supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].
  34. [34]
    J. Tarrío and O. Varela, Electric/magnetic duality and RG flows in AdS 4 /CFT 3, JHEP 01 (2014) 071 [arXiv:1311.2933] [INSPIRE].
  35. [35]
    A. Borghese, A. Guarino and D. Roest, All G 2 invariant critical points of maximal supergravity, JHEP 12 (2012) 108 [arXiv:1209.3003] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Borghese, G. Dibitetto, A. Guarino, D. Roest and O. Varela, The SU(3)-invariant sector of new maximal supergravity, JHEP 03 (2013) 082 [arXiv:1211.5335] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    A. Borghese, A. Guarino and D. Roest, Triality, Periodicity and Stability of SO(8) Gauged Supergravity, JHEP 05 (2013) 107 [arXiv:1302.6057] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    G. Dibitetto, A. Guarino and D. Roest, Lobotomy of Flux Compactifications, JHEP 05 (2014) 067 [arXiv:1402.4478] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    Y. Pang, C.N. Pope and J. Rong, Holographic RG flow in a new SO(3) × SO(3) sector of ω-deformed SO(8) gauged \( \mathcal{N}=8 \) supergravity, JHEP 08 (2015) 122 [arXiv:1506.04270] [INSPIRE].
  40. [40]
    S. Cremonini, Y. Pang, C.N. Pope and J. Rong, Superfluid and metamagnetic phase transitions in ω-deformed gauged supergravity, JHEP 04 (2015) 074 [arXiv:1411.0010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    G. Dall’Agata and G. Inverso, On the Vacua of N = 8 Gauged Supergravity in 4 Dimensions, Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].
  42. [42]
    G. Dall’Agata and G. Inverso, de Sitter vacua in N = 8 supergravity and slow-roll conditions, Phys. Lett. B 718 (2013) 1132 [arXiv:1211.3414] [INSPIRE].
  43. [43]
    G. Inverso, H. Samtleben and M. Trigiante, Type II supergravity origin of dyonic gaugings, Phys. Rev. D 95 (2017) 066020 [arXiv:1612.05123] [INSPIRE].
  44. [44]
    A. Guarino, D.L. Jafferis and O. Varela, String Theory Origin of Dyonic N = 8 Supergravity and Its Chern-Simons Duals, Phys. Rev. Lett. 115 (2015) 091601 [arXiv:1504.08009] [INSPIRE].
  45. [45]
    A. Guarino and O. Varela, Dyonic ISO(7) supergravity and the duality hierarchy, JHEP 02 (2016) 079 [arXiv:1508.04432] [INSPIRE].
  46. [46]
    A. Guarino and O. Varela, Consistent \( \mathcal{N}=8 \) truncation of massive IIA on S 6, JHEP 12 (2015) 020 [arXiv:1509.02526] [INSPIRE].
  47. [47]
    F. Ciceri, A. Guarino and G. Inverso, The exceptional story of massive IIA supergravity, JHEP 08 (2016) 154 [arXiv:1604.08602] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Asymptotic behavior and Hamiltonian analysis of anti-de Sitter gravity coupled to scalar fields, Annals Phys. 322 (2007) 824 [hep-th/0603185] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in anti-de Sitter space-time, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].
  50. [50]
    V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] [INSPIRE].ADSGoogle Scholar
  51. [51]
    P. Breitenlohner, D. Maison and G.W. Gibbons, Four-Dimensional Black Holes from Kaluza-Klein Theories, Commun. Math. Phys. 120 (1988) 295 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    M. Cvetič and D. Youm, All the static spherically symmetric black holes of heterotic string on a six torus, Nucl. Phys. B 472 (1996) 249 [hep-th/9512127] [INSPIRE].
  53. [53]
    M. Cvetič and D. Youm, Entropy of nonextreme charged rotating black holes in string theory, Phys. Rev. D 54 (1996) 2612 [hep-th/9603147] [INSPIRE].
  54. [54]
    D. Gaiotto, W. Li and M. Padi, Non-Supersymmetric Attractor Flow in Symmetric Spaces, JHEP 12 (2007) 093 [arXiv:0710.1638] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    E. Bergshoeff, W. Chemissany, A. Ploegh, M. Trigiante and T. Van Riet, Generating Geodesic Flows and Supergravity Solutions, Nucl. Phys. B 812 (2009) 343 [arXiv:0806.2310] [INSPIRE].
  56. [56]
    G. Bossard, H. Nicolai and K.S. Stelle, Universal BPS structure of stationary supergravity solutions, JHEP 07 (2009) 003 [arXiv:0902.4438] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    P. Fré, A.S. Sorin and M. Trigiante, Integrability of Supergravity Black Holes and New Tensor Classifiers of Regular and Nilpotent Orbits, JHEP 04 (2012) 015 [arXiv:1103.0848] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    L. Andrianopoli, R. D’Auria, A. Gallerati and M. Trigiante, Extremal Limits of Rotating Black Holes, JHEP 05 (2013) 071 [arXiv:1303.1756] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    L. Andrianopoli, A. Gallerati and M. Trigiante, On Extremal Limits and Duality Orbits of Stationary Black Holes, JHEP 01 (2014) 053 [arXiv:1310.7886] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G. Dall’Agata and G. Inverso, On the Vacua of N = 8 Gauged Supergravity in 4 Dimensions, Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].
  61. [61]
    G. Dall’Agata and G. Inverso, de Sitter vacua in N = 8 supergravity and slow-roll conditions, Phys. Lett. B 718 (2013) 1132 [arXiv:1211.3414] [INSPIRE].
  62. [62]
    G. Dall’Agata, G. Inverso and A. Marrani, Symplectic Deformations of Gauged Maximal Supergravity, JHEP 07 (2014) 133 [arXiv:1405.2437] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    G. Inverso, Electric-magnetic deformations of D = 4 gauged supergravities, JHEP 03 (2016) 138 [arXiv:1512.04500] [INSPIRE].
  64. [64]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 superYang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].
  65. [65]
    A. Gallerati and M. Trigiante, Introductory Lectures on Extended Supergravities and Gaugings, Springer Proc. Phys. 176 (2016) 41 [INSPIRE].CrossRefMATHGoogle Scholar
  66. [66]
    O. Aharony, O. Bergman, D.L. Jafferis and J.M. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
  67. [67]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    M. Billó, D. Fabbri, P. Fré, P. Merlatti and A. Zaffaroni, Rings of short \( \mathcal{N}=3 \) superfields in three-dimensions and M-theory on AdS 4 × N 0,1,0, Class. Quant. Grav. 18 (2001) 1269 [hep-th/0005219] [INSPIRE].
  69. [69]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].
  70. [70]
    I. Papadimitriou, Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of the Deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  72. [72]
    K. Skenderis, Asymptotically Anti-de Sitter space-times and their stress energy tensor, Int. J. Mod. Phys. A 16 (2001) 740 [hep-th/0010138] [INSPIRE].
  73. [73]
    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  74. [74]
    R.B. Mann, Misner string entropy, Phys. Rev. D 60 (1999) 104047 [hep-th/9903229] [INSPIRE].
  75. [75]
    D.Z. Freedman, K. Pilch, S.S. Pufu and N.P. Warner, Boundary Terms and Three-Point Functions: An AdS/CFT Puzzle Resolved, JHEP 06 (2017) 053 [arXiv:1611.01888] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  76. [76]
    B. de Wit and H. Nicolai, N = 8 Supergravity with Local SO(8) × SU(8) Invariance, Phys. Lett. B 108 (1982) 285 [INSPIRE].
  77. [77]
    C.M. Hull, A New Gauging of N = 8 Supergravity, Phys. Rev. D 30 (1984) 760 [INSPIRE].
  78. [78]
    C.M. Hull, Noncompact Gaugings of N = 8 Supergravity, Phys. Lett. B 142 (1984) 39 [INSPIRE].
  79. [79]
    A. Anabalón, F. Canfora, A. Giacomini and J. Oliva, Black Holes with Primary Hair in gauged N = 8 Supergravity, JHEP 06 (2012) 010 [arXiv:1203.6627] [INSPIRE].
  80. [80]
    G.W. Gibbons, R. Kallosh and B. Kol, Moduli, scalar charges and the first law of black hole thermodynamics, Phys. Rev. Lett. 77 (1996) 4992 [hep-th/9607108] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    D. Astefanesei, K. Goldstein and S. Mahapatra, Moduli and (un)attractor black hole thermodynamics, Gen. Rel. Grav. 40 (2008) 2069 [hep-th/0611140] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  82. [82]
    K. Hajian and M.M. Sheikh-Jabbari, Redundant and Physical Black Hole Parameters: Is there an independent physical dilaton charge?, Phys. Lett. B 768 (2017) 228 [arXiv:1612.09279] [INSPIRE].
  83. [83]
    H. Lü, Y. Pang and C.N. Pope, AdS Dyonic Black Hole and its Thermodynamics, JHEP 11 (2013) 033 [arXiv:1307.6243] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  84. [84]
    A. Anabalón, T. Andrade, D. Astefanesei and R. Mann, Universal Formula for the Holographic Speed of Sound, arXiv:1702.00017 [INSPIRE].
  85. [85]
    E. Mefford and G.T. Horowitz, Simple holographic insulator, Phys. Rev. D 90 (2014) 084042 [arXiv:1406.4188] [INSPIRE].
  86. [86]
    A. Anabalón, D. Astefanesei and R. Mann, Holographic equation of state in fluid/gravity duality, Phys. Lett. B 770 (2017) 272 [arXiv:1604.05595] [INSPIRE].
  87. [87]
    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  88. [88]
    K. Goldstein, R.P. Jena, G. Mandal and S.P. Trivedi, A c-function for non-supersymmetric attractors, JHEP 02 (2006) 053 [hep-th/0512138] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  90. [90]
    A. Sen, Entropy Function and AdS 2 /CF T 1 Correspondence, JHEP 11 (2008) 075 [arXiv:0805.0095] [INSPIRE].
  91. [91]
    A. Sen, Quantum Entropy Function from AdS 2 /CF T 1 Correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].
  92. [92]
    A. Guarino and J. Tarrío, BPS black holes from massive IIA on S 6, JHEP 09 (2017) 141 [arXiv:1703.10833] [INSPIRE].
  93. [93]
    A. Guarino, BPS black hole horizons from massive IIA, JHEP 08 (2017) 100 [arXiv:1706.01823] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  94. [94]
    A. Guarino, Hypermultiplet gaugings and supersymmetric solutions from 11D and massive IIA supergravity on H (p,q) spaces, Eur. Phys. J. C 78 (2018) 202 [arXiv:1712.09549] [INSPIRE].
  95. [95]
    F. Azzurli, N. Bobev, P.M. Crichigno, V.S. Min and A. Zaffaroni, A universal counting of black hole microstates in AdS 4, JHEP 02 (2018) 054 [arXiv:1707.04257] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    N. Bobev, V.S. Min and K. Pilch, Mass-deformed ABJM and black holes in AdS 4, JHEP 03 (2018) 050 [arXiv:1801.03135] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Andrés Anabalón
    • 1
  • Dumitru Astefanesei
    • 2
  • Antonio Gallerati
    • 3
    • 4
  • Mario Trigiante
    • 3
    • 4
  1. 1.Universidad Adolfo Ibáñez, Departamento de Ciencias, Facultad de Artes LiberalesViña del MarChile
  2. 2.Pontificia Universidad Católica de Valparaíso, Instituto de FísicaValparaísoChile
  3. 3.Politecnico di Torino, Dipartimento DISATTorinoItaly
  4. 4.Istituto Nazionale di Fisica Nucleare (INFN) — Sezione di TorinoTorinoItaly

Personalised recommendations