Charged chiral fermions from M5-branes

Open Access
Regular Article - Theoretical Physics

Abstract

We study M5-branes wrapped on a multi-centred Taub-NUT space. Reducing to String Theory on the S1 fibration leads to D4-branes intersecting with D6-branes. D-braneology shows that there are additional charged chiral fermions from the open strings which stretch between the D4-branes and D6-branes. From the M-theory point of view the appearance of these charged states is mysterious as the M5-branes are wrapped on a smooth manifold. In this paper we show how these states arise in the M5-brane worldvolume theory and argue that are governed by a WZWN-like model where the topological term is five-dimensional.

Keywords

M-Theory Solitons Monopoles and Instantons Supersymmetry and Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.S. Howe and E. Sezgin, D = 11, p = 5, Phys. Lett. B 394 (1997) 62 [hep-th/9611008] [INSPIRE].
  2. [2]
    P.S. Howe, E. Sezgin and P.C. West, Covariant field equations of the M-theory five-brane, Phys. Lett. B 399 (1997) 49 [hep-th/9702008] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    M. Perry and J.H. Schwarz, Interacting chiral gauge fields in six-dimensions and Born-Infeld theory, Nucl. Phys. B 489 (1997) 47 [hep-th/9611065] [INSPIRE].
  4. [4]
    I.A. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D.P. Sorokin and M. Tonin, Covariant action for the superfive-brane of M-theory, Phys. Rev. Lett. 78 (1997) 4332 [hep-th/9701149] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    E. Witten, Some comments on string dynamics, in Future perspectives in string theory. Proceedings, Conference, Strings’95, Los Angeles U.S.A., 13-18 March 1995, pg. 501 [hep-th/9507121] [INSPIRE].
  6. [6]
    A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].
  7. [7]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].ADSMATHGoogle Scholar
  8. [8]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-branes, D4-branes and quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].
  9. [9]
    R. Dijkgraaf, L. Hollands, P. Sulkowski and C. Vafa, Supersymmetric gauge theories, intersecting branes and free fermions, JHEP 02 (2008) 106 [arXiv:0709.4446] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    E. Witten, Geometric Langlands from six dimensions, arXiv:0905.2720 [INSPIRE].
  11. [11]
    B. Assel and S. Schäfer-Nameki, Six-dimensional origin of N = 4 SYM with duality defects, JHEP 12 (2016) 058 [arXiv:1610.03663] [INSPIRE].
  12. [12]
    T. Adawi, M. Cederwall, U. Gran, B.E.W. Nilsson and B. Razaznejad, Goldstone tensor modes, JHEP 02 (1999) 001 [hep-th/9811145] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    N.D. Lambert and P.C. West, Goldstone soliton interactions and brane world neutrinos, New J. Phys. 4 (2002) 7 [hep-th/0012121] [INSPIRE].ADSGoogle Scholar
  14. [14]
    F. Ohlsson, (2,0) theory on Taub-NUT: a note on WZW models on singular fibrations, arXiv:1205.0694 [INSPIRE].
  15. [15]
    N. Lambert and H. Liu, Charged states in M-theory, unpublished.Google Scholar
  16. [16]
    S.A. Cherkis and J.H. Schwarz, Wrapping the M-theory five-brane on K3, Phys. Lett. B 403 (1997) 225 [hep-th/9703062] [INSPIRE].
  17. [17]
    H. Linander and F. Ohlsson, (2, 0) theory on circle fibrations, JHEP 01 (2012) 159 [arXiv:1111.6045] [INSPIRE].
  18. [18]
    C. Cordova and D.L. Jafferis, Five-dimensional maximally supersymmetric Yang-Mills in supergravity backgrounds, JHEP 10 (2017) 003 [arXiv:1305.2886] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    P.S. Howe, G. Sierra and P.K. Townsend, Supersymmetry in six-dimensions, Nucl. Phys. B 221 (1983) 331 [INSPIRE].
  20. [20]
    G.W. Gibbons and S.W. Hawking, Classification of gravitational instanton symmetries, Commun. Math. Phys. 66 (1979) 291 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    P.J. Ruback, The motion of Kaluza-Klein monopoles, Commun. Math. Phys. 107 (1986) 93 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    C.M. Hull and N. Lambert, Emergent time and the M5-brane, JHEP 06 (2014) 016 [arXiv:1403.4532] [INSPIRE].
  24. [24]
    S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    E.R.C. Abraham and P.K. Townsend, Q kinks, Phys. Lett. B 291 (1992) 85 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of MathematicsKing’s College LondonLondonU.K.

Personalised recommendations