\( \mathcal{N}=2 \) SYK model in the superspace formalism

Open Access
Regular Article - Theoretical Physics
  • 7 Downloads

Abstract

We use superspace methods to study an SYK-like model with \( \mathcal{N}=2 \) supersymmetry in one dimension, and an analog of this model in two dimensions. We find the four-point function as an expansion in the basis of eigenfunctions of the Casimir of su(1, 1|1). We also find retarded kernels and Lyapunov exponents for both cases.

Keywords

1/N Expansion Conformal Field Theory Extended Supersymmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  2. [2]
    A. Kitaev, A simple model of quantum holography, talks at KITP (2015).Google Scholar
  3. [3]
    D.J. Gross and V. Rosenhaus, A Generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093 [arXiv:1610.01569] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    J. Yoon, SYK Models and SYK-like Tensor Models with Global Symmetry, JHEP 10 (2017) 183 [arXiv:1707.01740] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [arXiv:1610.08917] [INSPIRE].ADSGoogle Scholar
  6. [6]
    J. Murugan, D. Stanford and E. Witten, More on Supersymmetric and 2d Analogs of the SYK Model, JHEP 08 (2017) 146 [arXiv:1706.05362] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    C. Peng, M. Spradlin and A. Volovich, Correlators in the \( \mathcal{N}=2 \) Supersymmetric SYK Model, JHEP 10 (2017) 202 [arXiv:1706.06078] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    E. Witten, An SYK-Like Model Without Disorder, arXiv:1610.09758 [INSPIRE].
  9. [9]
    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].ADSGoogle Scholar
  10. [10]
    C. Peng, M. Spradlin and A. Volovich, A Supersymmetric SYK-like Tensor Model, JHEP 05 (2017) 062 [arXiv:1612.03851] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    C. Vafa and N.P. Warner, Catastrophes and the Classification of Conformal Theories, Phys. Lett. B 218 (1989) 51 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Jensen, Chaos in AdS 2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  16. [16]
    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.R. Das, A. Jevicki and K. Suzuki, Three Dimensional View of the SYK/AdS Duality, JHEP 09 (2017) 017 [arXiv:1704.07208] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    K. Bulycheva, A note on the SYK model with complex fermions, JHEP 12 (2017) 069 [arXiv:1706.07411] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsPrinceton UniversityPrincetonU.S.A.

Personalised recommendations