Modulus D-term inflation

  • Kenji Kadota
  • Tatsuo Kobayashi
  • Ikumi Saga
  • Keigo Sumita
Open Access
Regular Article - Theoretical Physics
  • 8 Downloads

Abstract

We propose a new model of single-field D-term inflation in supergravity, where the inflation is driven by a single modulus field which transforms non-linearly under the U(1) gauge symmetry. One of the notable features of our modulus D-term inflation scenario is that the global U(1) remains unbroken in the vacuum and hence our model is not plagued by the cosmic string problem which can exclude most of the conventional D-term inflation models proposed so far due to the CMB observations.

Keywords

Cosmology of Theories beyond the SM String theory and cosmic strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G.R. Dvali, Q. Shafi and R.K. Schaefer, Large scale structure and supersymmetric inflation without fine tuning, Phys. Rev. Lett. 73 (1994) 1886 [hep-ph/9406319] [INSPIRE].
  2. [2]
    E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart and D. Wands, False vacuum inflation with Einstein gravity, Phys. Rev. D 49 (1994) 6410 [astro-ph/9401011] [INSPIRE].
  3. [3]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  4. [4]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
  5. [5]
    E. Halyo, Hybrid inflation from supergravity D terms, Phys. Lett. B 387 (1996) 43 [hep-ph/9606423] [INSPIRE].
  6. [6]
    P. Binetruy and G.R. Dvali, D term inflation, Phys. Lett. B 388 (1996) 241 [hep-ph/9606342] [INSPIRE].
  7. [7]
    J.A. Casas, J.M. Moreno, C. Muñoz and M. Quirós, Cosmological Implications of an Anomalous U(1): Inflation, Cosmic Strings and Constraints on Superstring Parameters, Nucl. Phys. B 328 (1989) 272 [INSPIRE].
  8. [8]
    D.H. Lyth and A. Riotto, Comments on D term inflation, Phys. Lett. B 412 (1997) 28 [hep-ph/9707273] [INSPIRE].
  9. [9]
    R. Jeannerot, Inflation in supersymmetric unified theories, Phys. Rev. D 56 (1997) 6205 [hep-ph/9706391] [INSPIRE].
  10. [10]
    J.R. Gott III, Gravitational lensing effects of vacuum strings: Exact solutions, Astrophys. J. 288 (1985) 422 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    N. Kaiser and A. Stebbins, Microwave Anisotropy Due to Cosmic Strings, Nature 310 (1984) 391 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Rocher and M. Sakellariadou, D-term inflation, cosmic strings and consistency with cosmic microwave background measurement, Phys. Rev. Lett. 94 (2005) 011303 [hep-ph/0412143] [INSPIRE].
  13. [13]
    J. Rocher and M. Sakellariadou, Consistency of cosmic strings with cosmic microwave background measurements, submitted to Phys. Rev. Lett. B (2004), hep-ph/0405133 [INSPIRE].
  14. [14]
    J. Rocher and M. Sakellariadou, D-term inflation in non-minimal supergravity, JCAP 11 (2006) 001 [hep-th/0607226] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    K. Kadota and J. Yokoyama, D-term inflation and leptogenesis by right-handed sneutrino, Phys. Rev. D 73 (2006) 043507 [hep-ph/0512221] [INSPIRE].
  16. [16]
    C.-M. Lin and J. McDonald, Supergravity modification of D-term hybrid inflation: Solving the cosmic string and spectral index problems via a right-handed sneutrino, Phys. Rev. D 74 (2006) 063510 [hep-ph/0604245] [INSPIRE].
  17. [17]
    O. Seto and J. Yokoyama, Hiding cosmic strings in supergravity D-term inflation, Phys. Rev. D 73 (2006) 023508 [hep-ph/0508172] [INSPIRE].
  18. [18]
    M. Endo, M. Kawasaki and T. Moroi, Cosmic string from D term inflation and curvaton, Phys. Lett. B 569 (2003) 73 [hep-ph/0304126] [INSPIRE].
  19. [19]
    W. Buchmüller, V. Domcke and K. Schmitz, Superconformal D-Term Inflation, JCAP 04 (2013) 019 [arXiv:1210.4105] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    V. Domcke, K. Schmitz and T.T. Yanagida, Dynamical D-terms in Supergravity, Nucl. Phys. B 891 (2015) 230 [arXiv:1410.4641] [INSPIRE].
  21. [21]
    K. Kadota, T. Kobayashi and K. Sumita, A viable D-term hybrid inflation model, JCAP 11 (2017) 033 [arXiv:1707.00813] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    J.L. Evans, T. Gherghetta, N. Nagata and M. Peloso, Low-scale D-term inflation and the relaxion mechanism, Phys. Rev. D 95 (2017) 115027 [arXiv:1704.03695] [INSPIRE].
  23. [23]
    V. Domcke and K. Schmitz, Unified model of D-term inflation, Phys. Rev. D 95 (2017) 075020 [arXiv:1702.02173] [INSPIRE].
  24. [24]
    V. Domcke and K. Schmitz, Inflation from High-Scale Supersymmetry Breaking, arXiv:1712.08121 [INSPIRE].
  25. [25]
    T. Kobayashi and O. Seto, Dilaton and moduli fields in D term inflation, Phys. Rev. D 69 (2004) 023510 [hep-ph/0307332] [INSPIRE].
  26. [26]
    K. Kadota and M. Yamaguchi, D-term chaotic inflation in supergravity, Phys. Rev. D 76 (2007) 103522 [arXiv:0706.2676] [INSPIRE].
  27. [27]
    K. Kadota, T. Kawano and M. Yamaguchi, New D-term chaotic inflation in supergravity and leptogenesis, Phys. Rev. D 77 (2008) 123516 [arXiv:0802.0525] [INSPIRE].
  28. [28]
    K. Nakayama, K. Saikawa, T. Terada and M. Yamaguchi, Structure of Kähler potential for D-term inflationary attractor models, JHEP 05 (2016) 067 [arXiv:1603.02557] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    L.E. Ibanez and A.M. Uranga, String theory and particle physics: An introduction to string phenomenology, Cambridge University Press (2012) [INSPIRE].
  31. [31]
    H. Abe, T. Higaki and T. Kobayashi, KKLT type models with moduli-mixing superpotential, Phys. Rev. D 73 (2006) 046005 [hep-th/0511160] [INSPIRE].
  32. [32]
    H. Abe, T. Higaki, T. Kobayashi and O. Seto, Non-perturbative moduli superpotential with positive exponents, Phys. Rev. D 78 (2008) 025007 [arXiv:0804.3229] [INSPIRE].
  33. [33]
    M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally Light Hidden Photons in LARGE Volume String Compactifications, JHEP 11 (2009) 027 [arXiv:0909.0515] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS)DaejeonKorea
  2. 2.Department of PhysicsHokkaido UniversitySapporoJapan
  3. 3.Department of PhysicsWaseda UniversityTokyoJapan

Personalised recommendations