Advertisement

A note on \( \mathfrak{g}{\mathfrak{l}}_2 \)-invariant Bethe vectors

  • S. Belliard
  • N. A. Slavnov
Open Access
Regular Article - Theoretical Physics
  • 51 Downloads

Abstract

We consider \( \mathfrak{g}{\mathfrak{l}}_2 \)-invariant quantum integrable models solvable by the algebraic Bethe ansatz. We show that the form of on-shell Bethe vectors is preserved under certain twist transformations of the monodromy matrix. We also derive the actions of the twisted monodromy matrix entries on the twisted off-shell Bethe vectors.

Keywords

Integrable Hierarchies Quantum Groups 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Gromov, F. Levkovich-Maslyuk and G. Sizov, New Construction of Eigenstates and Separation of Variables for SU(N) Quantum Spin Chains, JHEP 09 (2017) 111 [arXiv:1610.08032] [INSPIRE].
  2. [2]
    L.D. Faddeev, E.K. Sklyanin and L.A. Takhtajan, The Quantum Inverse Problem Method. 1, Theor. Math. Phys. 40 (1980) 688 [INSPIRE].
  3. [3]
    V.E. Korepin, N.M. Bogoliubov and A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge (1993).Google Scholar
  4. [4]
    L.D. Faddeev, How algebraic Bethe ansatz works for integrable model, in Les Houches Lectures. Quantum Symmetries, A. Connes et al. eds., North Holland, (1998), p. 149 [hep-th/9605187] [INSPIRE].
  5. [5]
    E.K. Sklyanin, Functional Bethe Ansatz, in Integrable and Superintegrable Theories, B. Kupershmidt eds., World Scientific, Singapore (1990), p. 8.Google Scholar
  6. [6]
    E.K. Sklyanin, Quantum inverse scattering method. Selected topics, in Quantum Group and Quantum Integrable Systems. Nankai Lectures on Mathematical Physics, Nankai Institute of Mathematics, China, 2-18 April 1991, World Scientific (1992), p. 63 [hep-th/9211111] [INSPIRE].
  7. [7]
    E.K. Sklyanin, Separation of variables - new trends, Prog. Theor. Phys. Suppl. 118 (1995) 35 [solv-int/9504001] [INSPIRE].
  8. [8]
    Y. Jiang, S. Komatsu, I. Kostov and D. Serban, The hexagon in the mirror: the three-point function in the SoV representation, J. Phys. A 49 (2016) 174007 [arXiv:1506.09088] [INSPIRE].
  9. [9]
    S. Belliard and N. Crampé, Heisenberg XXX model with general boundaries: Eigenvectors from Algebraic Bethe ansatz, SIGMA 9 (2013) 72 [arXiv:1309.6165]MathSciNetzbMATHGoogle Scholar
  10. [10]
    S. Belliard, Modified algebraic Bethe ansatz for XXZ chain on the segment — I: triangular cases, Nucl. Phys. B 892 (2015) 1 [arXiv:1408.4840] [INSPIRE].
  11. [11]
    S. Belliard and R.A. Pimenta, Modified algebraic Bethe ansatz for XXZ chain on the segment — II: general cases, Nucl. Phys. B 894 (2015) 527 [arXiv:1412.7511] [INSPIRE].
  12. [12]
    J. Avan, S. Belliard, N. Grosjean and R. Pimenta, Modified algebraic Bethe ansatz for XXZ chain on the segment — III: proof, Nucl. Phys. B 899 (2015) 229 [arXiv:1506.02147].
  13. [13]
    S. Belliard and R.A. Pimenta, Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain, SIGMA 11 (2015) 099 [arXiv:1506.06550] [INSPIRE].
  14. [14]
    S. Belliard, S. Pakuliak, É. Ragoucy and N.A. Slavnov, Bethe vectors of GL(3)-invariant integrable models, J. Stat. Mech. 1302 (2013) P02020 [arXiv:1210.0768] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Sorbonne Université, CNRS, Laboratoire de Physique Théorique et Hautes Energies, LPTHEParisFrance
  2. 2.Institut de Physique Théorique, DSM, CEA, URA2306 CNRS SaclayGif-sur-YvetteFrance
  3. 3.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations