Logarithms and volumes of polytopes

  • Michael Enciso
Open Access
Regular Article - Theoretical Physics


Describing the geometry of the dual amplituhedron without reference to a particular triangulation is an open problem. In this note we introduce a new way of determining the volume of the tree-level NMHV dual amplituhedron. We show that certain contour integrals of logarithms serve as natural building blocks for computing this volume as well as the volumes of general polytopes in any dimension. These building blocks encode the geometry of the underlying polytopes in a triangulation-independent way, and make identities between different representations of the amplitudes manifest.


1/N Expansion Scattering Amplitudes Supersymmetric Gauge Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].
  2. [2]
    L.J. Dixon, Calculating scattering amplitudes efficiently, in QCD and beyond. Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI-95, Boulder, U.S.A., June 4-30, 1995, pp. 539-584, hep-ph/9601359 [INSPIRE].
  3. [3]
    J.M. Henn and J.C. Plefka, Scattering Amplitudes in Gauge Theories, in Lecture Notes in Physics 883, Springer (2014).Google Scholar
  4. [4]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP 10 (2014) 030 [arXiv:1312.2007] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    N. Arkani-Hamed and J. Trnka, Into the Amplituhedron, JHEP 12 (2014) 182 [arXiv:1312.7878] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press, (2016), [arXiv:1212.5605] [INSPIRE].
  8. [8]
    A. Postnikov, Total positivity, Grassmannians and networks, math/0609764 [INSPIRE].
  9. [9]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Hodges and J. Trnka, A Note on Polytopes for Scattering Amplitudes, JHEP 04 (2012) 081 [arXiv:1012.6030] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    N. Arkani-Hamed, A. Hodges and J. Trnka, Positive Amplitudes In The Amplituhedron, JHEP 08 (2015) 030 [arXiv:1412.8478] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    L. Ferro, T. Lukowski, A. Orta and M. Parisi, Towards the Amplituhedron Volume, JHEP 03 (2016) 014 [arXiv:1512.04954] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    M. Enciso, Volumes of Polytopes Without Triangulations, JHEP 10 (2017) 071 [arXiv:1408.0932] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    L.J. Mason and D. Skinner, Dual Superconformal Invariance, Momentum Twistors and Grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A Duality For The S Matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S. Huggett and K. Tod, An Introduction to Twistor Theory, Cambridge University Press, (1994).Google Scholar
  17. [17]
    L. Hughston and T. Hurd, A CP 5 Calculus For Space-time Fields, Phys. Rept. 100 (1983) 275.ADSCrossRefGoogle Scholar
  18. [18]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and AstronomyUniversity of California at Los AngelesLos AngelesU.S.A.

Personalised recommendations