On Minimal Dark Matter coupled to the Higgs

  • Laura Lopez Honorez
  • Michel H. G. Tytgat
  • Pantelis Tziveloglou
  • Bryan Zaldivar
Open Access
Regular Article - Theoretical Physics


We provide a unified presentation of extensions of the Minimal Dark Matter framework in which new fermionic electroweak multiplets are coupled to each other via the Standard Model Higgs doublet. We study systematically the generic features of all the possibilities, starting with a singlet and two doublets (akin to Bino-Higgsino dark matter) up to a Majorana quintuplet coupled to two Weyl quadruplets. We pay special attention to this last case, since it has not yet been discussed in the literature. We estimate the parameter space for viable dark matter candidates. This includes an estimate for the mass of a quasi-pure quadruplet dark matter candidate taking into account the Sommerfeld effect. We also argue how the coupling to the Higgs can bring the Minimal Dark Matter scenario within the reach of present and future direct detection experiments.


Beyond Standard Model Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  2. [2]
    M. Cirelli and A. Strumia, Minimal Dark Matter: Model and results, New J. Phys. 11 (2009) 105005 [arXiv:0903.3381] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L. Di Luzio, R. Gröber, J.F. Kamenik and M. Nardecchia, Accidental matter at the LHC, JHEP 07 (2015) 074 [arXiv:1504.00359] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    L.M. Krauss and F. Wilczek, Discrete Gauge Symmetry in Continuum Theories, Phys. Rev. Lett. 62 (1989) 1221 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Kadastik, K. Kannike and M. Raidal, Matter parity as the origin of scalar Dark Matter, Phys. Rev. D 81 (2010) 015002 [arXiv:0903.2475] [INSPIRE].ADSGoogle Scholar
  6. [6]
    N. Nagata, K.A. Olive and J. Zheng, Weakly-Interacting Massive Particles in Non-supersymmetric SO(10) Grand Unified Models, JHEP 10 (2015) 193 [arXiv:1509.00809] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A. De Simone, V. Sanz and H.P. Sato, Pseudo-Dirac Dark Matter Leaves a Trace, Phys. Rev. Lett. 105 (2010) 121802 [arXiv:1004.1567] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Hisano, K. Ishiwata and N. Nagata, QCD Effects on Direct Detection of Wino Dark Matter, JHEP 06 (2015) 097 [arXiv:1504.00915] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    XENON collaboration, E. Aprile et al., Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
  10. [10]
    R.J. Hill and M.P. Solon, Standard Model anatomy of WIMP dark matter direct detection II: QCD analysis and hadronic matrix elements, Phys. Rev. D 91 (2015) 043505 [arXiv:1409.8290] [INSPIRE].ADSGoogle Scholar
  11. [11]
    V. Lefranc, E. Moulin, P. Panci, F. Sala and J. Silk, Dark Matter in γ lines: Galactic Center vs dwarf galaxies, JCAP 09 (2016) 043 [arXiv:1608.00786] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. Ovanesyan, T.R. Slatyer and I.W. Stewart, Heavy Dark Matter Annihilation from Effective Field Theory, Phys. Rev. Lett. 114 (2015) 211302 [arXiv:1409.8294] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Baumgart, I.Z. Rothstein and V. Vaidya, Constraints on Galactic Wino Densities from Gamma Ray Lines, JHEP 04 (2015) 106 [arXiv:1412.8698] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Cirelli, T. Hambye, P. Panci, F. Sala and M. Taoso, Gamma ray tests of Minimal Dark Matter, JCAP 10 (2015) 026 [arXiv:1507.05519] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Garcia-Cely, A. Ibarra, A.S. Lamperstorfer and M.H.G. Tytgat, Gamma-rays from Heavy Minimal Dark Matter, JCAP 10 (2015) 058 [arXiv:1507.05536] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J.D. March-Russell and S.M. West, WIMPonium and Boost Factors for Indirect Dark Matter Detection, Phys. Lett. B 676 (2009) 133 [arXiv:0812.0559] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Ellis, F. Luo and K.A. Olive, Gluino Coannihilation Revisited, JHEP 09 (2015) 127 [arXiv:1503.07142] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [arXiv:1407.7874] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    M.B. Wise and Y. Zhang, Stable Bound States of Asymmetric Dark Matter, Phys. Rev. D 90 (2014) 055030 [Erratum ibid. D 91 (2015) 039907] [arXiv:1407.4121] [INSPIRE].
  20. [20]
    S.P. Liew and F. Luo, Effects of QCD bound states on dark matter relic abundance, JHEP 02 (2017) 091 [arXiv:1611.08133] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    P. Asadi, M. Baumgart, P.J. Fitzpatrick, E. Krupczak and T.R. Slatyer, Capture and Decay of Electroweak WIMPonium, JCAP 02 (2017) 005 [arXiv:1610.07617] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Cosmological Implications of Dark Matter Bound States, JCAP 05 (2017) 006 [arXiv:1702.01141] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    G. Ovanesyan, N.L. Rodd, T.R. Slatyer and I.W. Stewart, One-loop correction to heavy dark matter annihilation, Phys. Rev. D 95 (2017) 055001 [arXiv:1612.04814] [INSPIRE].ADSGoogle Scholar
  24. [24]
    L. Rinchiuso, Search for dark matter signals with 10-year obsevations by H.E.S.S. towards the Galactic Centre, talk at Moriond 2017, La Thuile, Italy, 18–25 March 2017.Google Scholar
  25. [25]
    T. Hambye, F.S. Ling, L. Lopez Honorez and J. Rocher, Scalar Multiplet Dark Matter, JHEP 07 (2009) 090 [Erratum ibid. 05 (2010) 066] [arXiv:0903.4010] [INSPIRE].
  26. [26]
    A. Freitas, S. Westhoff and J. Zupan, Integrating in the Higgs Portal to Fermion Dark Matter, JHEP 09 (2015) 015 [arXiv:1506.04149] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    R. Mahbubani and L. Senatore, The minimal model for dark matter and unification, Phys. Rev. D 73 (2006) 043510 [hep-ph/0510064] [INSPIRE].
  28. [28]
    F. D’Eramo, Dark matter and Higgs boson physics, Phys. Rev. D 76 (2007) 083522 [arXiv:0705.4493] [INSPIRE].ADSGoogle Scholar
  29. [29]
    R. Enberg, P.J. Fox, L.J. Hall, A.Y. Papaioannou and M. Papucci, LHC and dark matter signals of improved naturalness, JHEP 11 (2007) 014 [arXiv:0706.0918] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T. Cohen, J. Kearney, A. Pierce and D. Tucker-Smith, Singlet-Doublet Dark Matter, Phys. Rev. D 85 (2012) 075003 [arXiv:1109.2604] [INSPIRE].ADSGoogle Scholar
  31. [31]
    C. Cheung and D. Sanford, Simplified Models of Mixed Dark Matter, JCAP 02 (2014) 011 [arXiv:1311.5896] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    L. Calibbi, A. Mariotti and P. Tziveloglou, Singlet-Doublet Model: Dark matter searches and LHC constraints, JHEP 10 (2015) 116 [arXiv:1505.03867] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Banerjee, S. Matsumoto, K. Mukaida and Y.-L.S. Tsai, WIMP Dark Matter in a Well-Tempered Regime: A case study on Singlet-Doublets Fermionic WIMP, JHEP 11 (2016) 070 [arXiv:1603.07387] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C.E. Yaguna, Singlet-Doublet Dirac Dark Matter, Phys. Rev. D 92 (2015) 115002 [arXiv:1510.06151] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Beneke, A. Bharucha, A. Hryczuk, S. Recksiegel and P. Ruiz-Femenia, The last refuge of mixed wino-Higgsino dark matter, JHEP 01 (2017) 002 [arXiv:1611.00804] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    A. Dedes and D. Karamitros, Doublet-Triplet Fermionic Dark Matter, Phys. Rev. D 89 (2014) 115002 [arXiv:1403.7744] [INSPIRE].ADSGoogle Scholar
  37. [37]
    T.M.P. Tait and Z.-H. Yu, Triplet-Quadruplet Dark Matter, JHEP 03 (2016) 204 [arXiv:1601.01354] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [INSPIRE].
  39. [39]
    J. McKay, P. Scott and P. Athron, Pitfalls of iterative pole mass calculation in electroweak multiplets, arXiv:1710.01511 [INSPIRE].
  40. [40]
    M. Beneke et al., Relic density of wino-like dark matter in the MSSM, JHEP 03 (2016) 119 [arXiv:1601.04718] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Beneke, C. Hellmann and P. Ruiz-Femenia, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos III. Computation of the Sommerfeld enhancements, JHEP 05 (2015) 115 [arXiv:1411.6924] [INSPIRE].
  42. [42]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  43. [43]
    G. Steigman, B. Dasgupta and J.F. Beacom, Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation, Phys. Rev. D 86 (2012) 023506 [arXiv:1204.3622] [INSPIRE].ADSGoogle Scholar
  44. [44]
    A. Strumia, Sommerfeld corrections to type-II and III leptogenesis, Nucl. Phys. B 809 (2009) 308 [arXiv:0806.1630] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for Dark Matter Searches at the LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    C. Garcia-Cely, M. Gustafsson and A. Ibarra, Probing the Inert Doublet Dark Matter Model with Cherenkov Telescopes, JCAP 02 (2016) 043 [arXiv:1512.02801] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    C. Garcia-Cely and J. Heeck, Phenomenology of left-right symmetric dark matter, arXiv:1512.03332 [INSPIRE].
  48. [48]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Beneke, C. Hellmann and P. Ruiz-Femenia, Heavy neutralino relic abundance with Sommerfeld enhancements — a study of pMSSM scenarios, JHEP 03 (2015) 162 [arXiv:1411.6930] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    B. Ostdiek, Constraining the minimal dark matter fiveplet with LHC searches, Phys. Rev. D 92 (2015) 055008 [arXiv:1506.03445] [INSPIRE].ADSGoogle Scholar
  51. [51]
    C. Arina, M. Chala, V. Martin-Lozano and G. Nardini, Confronting SUSY models with LHC data via electroweakino production, JHEP 12 (2016) 149 [arXiv:1610.03822] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Cirelli, F. Sala and M. Taoso, Wino-like Minimal Dark Matter and future colliders, JHEP 10 (2014) 033 [Erratum ibid. 01 (2015) 041] [arXiv:1407.7058] [INSPIRE].
  53. [53]
    Q.-F. Xiang, X.-J. Bi, P.-F. Yin and Z.-H. Yu, Exploring Fermionic Dark Matter via Higgs Boson Precision Measurements at the Circular Electron Positron Collider, Phys. Rev. D 97 (2018) 055004 [arXiv:1707.03094] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Ismail, E. Izaguirre and B. Shuve, Illuminating New Electroweak States at Hadron Colliders, Phys. Rev. D 94 (2016) 015001 [arXiv:1605.00658] [INSPIRE].ADSGoogle Scholar
  55. [55]
    A. Voigt and S. Westhoff, Virtual signatures of dark sectors in Higgs couplings, JHEP 11 (2017) 009 [arXiv:1708.01614] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M.A. Fedderke, T. Lin and L.-T. Wang, Probing the fermionic Higgs portal at lepton colliders, JHEP 04 (2016) 160 [arXiv:1506.05465] [INSPIRE].ADSGoogle Scholar
  57. [57]
    C. Cai, Z.-H. Yu and H.-H. Zhang, CEPC Precision of Electroweak Oblique Parameters and Weakly Interacting Dark Matter: the Fermionic Case, Nucl. Phys. B 921 (2017) 181 [arXiv:1611.02186] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    J.-W. Wang, X.-J. Bi, Q.-F. Xiang, P.-F. Yin and Z.-H. Yu, Exploring triplet-quadruplet fermionic dark matter at the LHC and future colliders, Phys. Rev. D 97 (2018) 035021 [arXiv:1711.05622] [INSPIRE].ADSGoogle Scholar
  59. [59]
    XENON collaboration, E. Aprile et al., First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  60. [60]
    C. Cheung, L.J. Hall, D. Pinner and J.T. Ruderman, Prospects and Blind Spots for Neutralino Dark Matter, JHEP 05 (2013) 100 [arXiv:1211.4873] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    R.J. Hill and M.P. Solon, WIMP-nucleon scattering with heavy WIMP effective theory, Phys. Rev. Lett. 112 (2014) 211602 [arXiv:1309.4092] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].ADSGoogle Scholar
  63. [63]
    R.J. Hill and M.P. Solon, Standard Model anatomy of WIMP dark matter direct detection I: weak-scale matching, Phys. Rev. D 91 (2015) 043504 [arXiv:1401.3339] [INSPIRE].ADSGoogle Scholar
  64. [64]
    A. Crivellin, M. Hoferichter and M. Procura, Accurate evaluation of hadronic uncertainties in spin-independent WIMP-nucleon scattering: Disentangling two- and three-flavor effects, Phys. Rev. D 89 (2014) 054021 [arXiv:1312.4951] [INSPIRE].ADSGoogle Scholar
  65. [65]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].
  66. [66]
    T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino Dark Matter Under Siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    Fermi-LAT collaboration, M. Ackermann et al., Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope, Phys. Rev. D 89 (2014) 042001 [arXiv:1310.0828] [INSPIRE].
  68. [68]
    A. Hryczuk, I. Cholis, R. Iengo, M. Tavakoli and P. Ullio, Indirect Detection Analysis: Wino Dark Matter Case Study, JCAP 07 (2014) 031 [arXiv:1401.6212] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    E.J. Chun, J.-C. Park and S. Scopel, Non-perturbative Effect and PAMELA Limit on Electro-Weak Dark Matter, JCAP 12 (2012) 022 [arXiv:1210.6104] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    E.J. Chun, S. Jung and J.-C. Park, Very Degenerate Higgsino Dark Matter, JHEP 01 (2017) 009 [arXiv:1607.04288] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  71. [71]
    T.R. Slatyer, The Sommerfeld enhancement for dark matter with an excited state, JCAP 02 (2010) 028 [arXiv:0910.5713] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay InstitutesBrusselsBelgium
  2. 2.Service de Physique ThéoriqueUniversité Libre de BruxellesBrusselsBelgium
  3. 3.LAPTh, Université de Savoie Mont Blanc CNRSAnnecy-le-VieuxFrance

Personalised recommendations