Unconventional supersymmetry at the boundary of AdS4 supergravity

  • L. Andrianopoli
  • B. L. Cerchiai
  • R. D’Auria
  • M. Trigiante
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

In this paper we perform, in the spirit of the holographic correspondence, a particular asymptotic limit of \( \mathcal{N}=2 \), AdS4 supergravity to \( \mathcal{N}=2 \) supergravity on a locally AdS3 boundary. Our boundary theory enjoys OSp(2|2) × SO(1,2) invariance and is shown to contain the D = 3 super-Chern Simons OSp(2|2) theory considered in [1] and featuring “unconventional local supersymmetry”. The model constructed in that reference describes the dynamics of a spin-1/2 Dirac field in the absence of spin 3/2 gravitini and was shown to be relevant for the description of graphene, near the Dirac points, for specific spatial geometries. Our construction yields the model in [1] with a specific prescription on the parameters. In this framework the Dirac spin-1/2 fermion originates from the radial components of the gravitini in D = 4.

Keywords

Supergravity Models AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.D. Alvarez, M. Valenzuela and J. Zanelli, Supersymmetry of a different kind, JHEP 04 (2012) 058 [arXiv:1109.3944] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  3. [3]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  4. [4]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].
  6. [6]
    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    E.P. Verlinde and H.L. Verlinde, RG flow, gravity and the cosmological constant, JHEP 05 (2000) 034 [hep-th/9912018] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    J. de Boer, The Holographic renormalization group, Fortsch. Phys. 49 (2001) 339 [hep-th/0101026] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  11. [11]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, IRMA Lect. Math. Theor. Phys. 8 (2005) 73 [hep-th/0404176] [INSPIRE].MathSciNetMATHGoogle Scholar
  13. [13]
    A. Lawrence and A. Sever, Holography and renormalization in Lorentzian signature, JHEP 10 (2006) 013 [hep-th/0606022] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    I. Heemskerk and J. Polchinski, Holographic and Wilsonian Renormalization Groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    A. Guevara, P. Pais and J. Zanelli, Dynamical Contents of Unconventional Supersymmetry, JHEP 08 (2016) 085 [arXiv:1606.05239] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    P.D. Alvarez, P. Pais and J. Zanelli, Unconventional supersymmetry and its breaking, Phys. Lett. B 735 (2014) 314 [arXiv:1306.1247] [INSPIRE].
  17. [17]
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Lucas and K.C. Fong, Hydrodynamics of electrons in graphene, J. Phys. Condens. Matter 30 (2018) 053001 [arXiv:1710.08425] [INSPIRE].
  19. [19]
    A. Cortijo and M.A.H. Vozmediano, A Cosmological model for corrugated graphene sheets, Eur. Phys. J. ST 148 (2007) 83 [cond-mat/0612623] [INSPIRE].
  20. [20]
    A. Cortijo and M.A.H. Vozmediano, Effects of topological defects and local curvature on the electronic properties of planar graphene, Nucl. Phys. B 763 (2007) 293 [Erratum ibid. B 807 (2009) 659] [cond-mat/0612374] [INSPIRE].
  21. [21]
    A. Cortijo, F. Guinea and M.A.H. Vozmediano, Geometrical and topological aspects of graphene and related materials, J. Phys. A 45 (2012) 383001 [arXiv:1112.2054] [INSPIRE].
  22. [22]
    A. Iorio and G. Lambiase, The Hawking-Unruh phenomenon on graphene, Phys. Lett. B 716 (2012) 334 [arXiv:1108.2340] [INSPIRE].
  23. [23]
    A. Iorio and G. Lambiase, Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking effect and all that, Phys. Rev. D 90 (2014) 025006 [arXiv:1308.0265] [INSPIRE].
  24. [24]
    M. Cvetič and G.W. Gibbons, Graphene and the Zermelo Optical Metric of the BTZ Black Hole, Annals Phys. 327 (2012) 2617 [arXiv:1202.2938] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    L. Andrianopoli and R. D’Auria, N = 1 and N = 2 pure supergravities on a manifold with boundary, JHEP 08 (2014) 012 [arXiv:1405.2010] [INSPIRE].
  26. [26]
    A.J. Amsel and G. Compere, Supergravity at the boundary of AdS supergravity, Phys. Rev. D 79 (2009) 085006 [arXiv:0901.3609] [INSPIRE].
  27. [27]
    M.M. Caldarelli, R. Emparan and M.J. Rodriguez, Black Rings in (Anti)-deSitter space, JHEP 11 (2008) 011 [arXiv:0806.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M.M. Caldarelli, R.G. Leigh, A.C. Petkou, P.M. Petropoulos, V. Pozzoli and K. Siampos, Vorticity in holographic fluids, PoS(CORFU2011)076 [arXiv:1206.4351] [INSPIRE].
  29. [29]
    A. Gnecchi, K. Hristov, D. Klemm, C. Toldo and O. Vaughan, Rotating black holes in 4d gauged supergravity, JHEP 01 (2014) 127 [arXiv:1311.1795] [INSPIRE].
  30. [30]
    D. Klemm, Four-dimensional black holes with unusual horizons, Phys. Rev. D 89 (2014) 084007 [arXiv:1401.3107] [INSPIRE].
  31. [31]
    R.A. Hennigar, D. Kubizňák, R.B. Mann and N. Musoke, Ultraspinning limits and super-entropic black holes, JHEP 06 (2015) 096 [arXiv:1504.07529] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A. Achucarro and P.K. Townsend, A Chern-Simons Action for Three-Dimensional anti-de Sitter Supergravity Theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].
  33. [33]
    A. Achucarro and P.K. Townsend, Extended Supergravities in d = (2 + 1) as Chern-Simons Theories, Phys. Lett. B 229 (1989) 383 [INSPIRE].
  34. [34]
    E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [INSPIRE].
  35. [35]
    E. Witten, Three-Dimensional Gravity Revisited, arXiv:0706.3359 [INSPIRE].
  36. [36]
    E. Witten, SL(2, Z) action on three-dimensional conformal field theories with Abelian symmetry, in From fields to strings: circumnavigating theoretical physics: Ian Kogan Memorial Collection. Volume 2, M. Shifman, A. Vainshtein and J. Wheater eds., World Scientific, Singapore (2005), pp. 1173-1200 [hep-th/0307041] [INSPIRE].
  37. [37]
    S.L. Cacciatori, M.M. Caldarelli, A. Giacomini, D. Klemm and D.S. Mansi, Chern-Simons formulation of three-dimensional gravity with torsion and nonmetricity, J. Geom. Phys. 56 (2006) 2523 [hep-th/0507200] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    R.G. Leigh, N.N. Hoang and A.C. Petkou, Torsion and the Gravity Dual of Parity Symmetry Breaking in AdS4/CF T3 Holography, JHEP 03 (2009) 033 [arXiv:0809.5258] [INSPIRE].
  39. [39]
    P.K. Townsend and B. Zhang, Thermodynamics of “Exotic” Bañados-Teitelboim-Zanelli Black Holes, Phys. Rev. Lett. 110 (2013) 241302 [arXiv:1302.3874] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.W. York Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J.D. Brown and J.W. York Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].
  42. [42]
    G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].
  43. [43]
    P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [INSPIRE].
  44. [44]
    R. Aros, M. Contreras, R. Olea, R. Troncoso and J. Zanelli, Conserved charges for gravity with locally AdS asymptotics, Phys. Rev. Lett. 84 (2000) 1647 [gr-qc/9909015] [INSPIRE].
  45. [45]
    O. Mišković and R. Olea, Topological regularization and self-duality in four-dimensional anti-de Sitter gravity, Phys. Rev. D 79 (2009) 124020 [arXiv:0902.2082] [INSPIRE].
  46. [46]
    P. van Nieuwenhuizen and D.V. Vassilevich, Consistent boundary conditions for supergravity, Class. Quant. Grav. 22 (2005) 5029 [hep-th/0507172] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    D.V. Belyaev, Boundary conditions in supergravity on a manifold with boundary, JHEP 01 (2006) 047 [hep-th/0509172] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    D.V. Belyaev and P. van Nieuwenhuizen, Tensor calculus for supergravity on a manifold with boundary, JHEP 02 (2008) 047 [arXiv:0711.2272] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    D.V. Belyaev and P. van Nieuwenhuizen, Simple d = 4 supergravity with a boundary, JHEP 09 (2008) 069 [arXiv:0806.4723] [INSPIRE].
  50. [50]
    D. Grumiller and P. van Nieuwenhuizen, Holographic counterterms from local supersymmetry without boundary conditions, Phys. Lett. B 682 (2010) 462 [arXiv:0908.3486] [INSPIRE].
  51. [51]
    D.V. Belyaev and T.G. Pugh, The Supermultiplet of boundary conditions in supergravity, JHEP 10 (2010) 031 [arXiv:1008.1574] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    G. Esposito, A.Y. Kamenshchik and K. Kirsten, One loop effective action for Euclidean Maxwell theory on manifolds with boundary, Phys. Rev. D 54 (1996) 7328 [hep-th/9606132] [INSPIRE].
  53. [53]
    I.G. Avramidi and G. Esposito, Gauge theories on manifolds with boundary, Commun. Math. Phys. 200 (1999) 495 [hep-th/9710048] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    I.G. Moss, Boundary terms for eleven-dimensional supergravity and M-theory, Phys. Lett. B 577 (2003) 71 [hep-th/0308159] [INSPIRE].
  55. [55]
    I.G. Moss, Boundary terms for supergravity and heterotic M-theory, Nucl. Phys. B 729 (2005) 179 [hep-th/0403106] [INSPIRE].
  56. [56]
    P.S. Howe, T.G. Pugh, K.S. Stelle and C. Strickland-Constable, Ectoplasm with an Edge, JHEP 08 (2011) 081 [arXiv:1104.4387] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  57. [57]
    D.Z. Freedman, K. Pilch, S.S. Pufu and N.P. Warner, Boundary Terms and Three-Point Functions: An AdS/CFT Puzzle Resolved, JHEP 06 (2017) 053 [arXiv:1611.01888] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, Holographic renormalization and supersymmetry, JHEP 02 (2017) 132 [arXiv:1612.06761] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    N. Drukker, D. Martelli and I. Shamir, The energy-momentum multiplet of supersymmetric defect field theories, JHEP 08 (2017) 010 [arXiv:1701.04323] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    R. Aros, M. Contreras, R. Olea, R. Troncoso and J. Zanelli, Conserved charges for even dimensional asymptotically AdS gravity theories, Phys. Rev. D 62 (2000) 044002 [hep-th/9912045] [INSPIRE].
  61. [61]
    P. Mora, R. Olea, R. Troncoso and J. Zanelli, Finite action principle for Chern-Simons AdS gravity, JHEP 06 (2004) 036 [hep-th/0405267] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    R. Olea, Mass, angular momentum and thermodynamics in four-dimensional Kerr-AdS black holes, JHEP 06 (2005) 023 [hep-th/0504233] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    D.P. Jatkar, G. Kofinas, O. Mišković and R. Olea, Conformal Mass in AdS gravity, Phys. Rev. D 89 (2014) 124010 [arXiv:1404.1411] [INSPIRE].
  64. [64]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
  66. [66]
    R. Emparan, G.T. Horowitz and R.C. Myers, Exact description of black holes on branes II: comparison with BTZ black holes and black strings, JHEP 01 (2000) 021 [hep-th/9912135] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  67. [67]
    G.W. Semenoff, Engineering holographic graphene, AIP Conf. Proc. 1483 (2012) 305 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.DISAT, Politecnico di TorinoTurinItaly
  2. 2.Istituto Nazionale di Fisica Nucleare (INFN) Sezione di TorinoTorinoItaly
  3. 3.Centro Fermi — Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”RomeItaly

Personalised recommendations