Advertisement

On the chiral algebra of Argyres-Douglas theories and S-duality

  • Jaewang Choi
  • Takahiro Nishinaka
Open Access
Regular Article - Theoretical Physics
  • 37 Downloads

Abstract

We study the two-dimensional chiral algebra associated with the simplest Argyres-Douglas type theory with an exactly marginal coupling, i.e., the (A3, A3) theory. Near a cusp in the space of the exactly marginal deformations (i.e., the conformal manifold), the theory is well-described by the SU(2) gauge theory coupled to isolated Argyres-Douglas theories and a fundamental hypermultiplet. In this sense, the (A3, A3) theory is an Argyres-Douglas version of the \( \mathcal{N} \) = 2 SU(2) conformal QCD. By studying its Higgs branch and Schur index, we identify the minimal possible set of chiral algebra generators for the (A3, A3) theory, and show that there is a unique set of closed OPEs among these generators. The resulting OPEs are consistent with the Schur index, Higgs branch chiral ring relations, and the BRST cohomology conjecture. We then show that the automorphism group of the chiral algebra we constructed contains a discrete group G with an S3 subgroup and a homomorphism GS4 × Z2. This result is consistent with the S-duality of the (A3, A3) theory.

Keywords

Supersymmetric Gauge Theory Conformal Field Theory Supersymmetry and Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C. Beem et al., Infinite chiral symmetry in four dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, The \( \mathcal{N} \) = 2 superconformal bootstrap, JHEP 03 (2016) 183 [arXiv:1412.7541] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P. Liendo, I. Ramirez and J. Seo, Stress-tensor OPE in \( \mathcal{N} \) = 2 superconformal theories, JHEP 02 (2016) 019 [arXiv:1509.00033] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Lemos and P. Liendo, \( \mathcal{N} \) = 2 central charge bounds from 2d chiral algebras, JHEP 04 (2016) 004 [arXiv:1511.07449] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    M. Lemos, P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping \( \mathcal{N} \) = 3 superconformal theories, JHEP 04 (2017) 032 [arXiv:1612.01536] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    C. Beem, L. Rastelli and B.C. van Rees, More \( \mathcal{N} \) = 4 superconformal bootstrap, Phys. Rev. D 96 (2017) 046014 [arXiv:1612.02363] [INSPIRE].ADSGoogle Scholar
  7. [7]
    P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    P.C. Argyres, M.R. Plesser, N. Seiberg and E. Witten, New N = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 461 (1996) 71 [hep-th/9511154] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    T. Eguchi, K. Hori, K. Ito and S.-K. Yang, Study of N = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 471 (1996) 430 [hep-th/9603002] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].
  11. [11]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Wild quiver gauge theories, JHEP 02 (2012) 031 [arXiv:1112.1691] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    D. Xie, General Argyres-Douglas theory, JHEP 01 (2013) 100 [arXiv:1204.2270] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A.D. Shapere and C. Vafa, BPS structure of Argyres-Douglas superconformal theories, hep-th/9910182 [INSPIRE].
  14. [14]
    S. Cecotti, A. Neitzke and C. Vafa, R-twisting and 4d/2d correspondences, arXiv:1006.3435 [INSPIRE].
  15. [15]
    D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M. Alim et al., BPS quivers and spectra of complete N = 2 quantum field theories, Commun. Math. Phys. 323 (2013) 1185 [arXiv:1109.4941] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Alim et al., \( \mathcal{N} \) = 2 quantum field theories and their BPS quivers, Adv. Theor. Math. Phys. 18 (2014) 27 [arXiv:1112.3984] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    D. Gaiotto, G.W. Moore and A. Neitzke, Spectral networks, Annales Henri Poincaré 14 (2013) 1643 [arXiv:1204.4824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    O. Aharony and Y. Tachikawa, A holographic computation of the central charges of d = 4, N = 2 SCFTs, JHEP 01 (2008) 037 [arXiv:0711.4532] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    A.D. Shapere and Y. Tachikawa, Central charges of N = 2 superconformal field theories in four dimensions, JHEP 09 (2008) 109 [arXiv:0804.1957] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    M. Buican and T. Nishinaka, On the superconformal index of Argyres-Douglas theories, J. Phys. A 49 (2016) 015401 [arXiv:1505.05884] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  22. [22]
    C. Cordova and S.-H. Shao, Schur indices, BPS particles and Argyres-Douglas theories, JHEP 01 (2016) 040 [arXiv:1506.00265] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    M. Buican and T. Nishinaka, Argyres-Douglas theories, the Macdonald index and an RG inequality, JHEP 02 (2016) 159 [arXiv:1509.05402] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    M. Buican and T. Nishinaka, Argyres-Douglas theories, S 1 reductions and topological symmetries, J. Phys. A 49 (2016) 045401 [arXiv:1505.06205] [INSPIRE].ADSzbMATHGoogle Scholar
  25. [25]
    J. Song, Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT, JHEP 02 (2016) 045 [arXiv:1509.06730] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    M. Buican and T. Nishinaka, Conformal manifolds in four dimensions and chiral algebras, J. Phys. A 49 (2016) 465401 [arXiv:1603.00887] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  27. [27]
    D. Xie, W. Yan and S.-T. Yau, Chiral algebra of Argyres-Douglas theory from M 5 brane, arXiv:1604.02155 [INSPIRE].
  28. [28]
    T. Creutzig, W-algebras for Argyres-Douglas theories, arXiv:1701.05926 [INSPIRE].
  29. [29]
    J. Song, D. Xie and W. Yan, Vertex operator algebras of Argyres-Douglas theories from M 5-branes, JHEP 12 (2017) 123 [arXiv:1706.01607] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Buican, Z. Laczko and T. Nishinaka, \( \mathcal{N} \) = 2 S-duality revisited, JHEP 09 (2017) 087 [arXiv:1706.03797] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    J. Gomis, P.-S. Hsin, Z. Komargodski, A. Schwimmer, N. Seiberg and S. Theisen, Anomalies, conformal manifolds and spheres, JHEP 03 (2016) 022 [arXiv:1509.08511] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Y. Tachikawa and K. Yonekura, Anomalies involving the space of couplings and the Zamolodchikov metric, JHEP 12 (2017) 140 [arXiv:1710.03934] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    R. Donagi and D.R. Morrison, Conformal field theories and compact curves in moduli spaces, arXiv:1709.05355 [INSPIRE].
  34. [34]
    M. Buican and T. Nishinaka, Compact conformal manifolds, JHEP 01 (2015) 112 [arXiv:1410.3006] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Buican, S. Giacomelli, T. Nishinaka and C. Papageorgakis, Argyres-Douglas theories and S-duality, JHEP 02 (2015) 185 [arXiv:1411.6026] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    M. Del Zotto, C. Vafa and D. Xie, Geometric engineering, mirror symmetry and \( 6{\mathrm{d}}_{\left(1,0\right)}\to 4{\mathrm{d}}_{\left(\mathcal{N}=2\right)} \), JHEP 11 (2015) 123 [arXiv:1504.08348] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    D. Xie and S.-T. Yau, New N = 2 dualities, arXiv:1602.03529 [INSPIRE].
  41. [41]
    D. Xie and S.-T. Yau, Argyres-Douglas matter and N = 2 dualities, arXiv:1701.01123 [INSPIRE].
  42. [42]
    D. Xie and K. Ye, Argyres-Douglas matter and S-duality: part II, arXiv:1711.06684 [INSPIRE].
  43. [43]
    M. Buican and T. Nishinaka, On irregular singularity wave functions and superconformal indices, JHEP 09 (2017) 066 [arXiv:1705.07173] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    S. Cecotti and M. Del Zotto, Higher S-dualities and Shephard-Todd groups, JHEP 09 (2015) 035 [arXiv:1507.01799] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  45. [45]
    V.G. Kac and M. Wakimoto, A remark on boundary level admissible representations, Compt. Rend. Math. 355 (2017) 128.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    J. de Boer, K. Hori, H. Ooguri, Y. Oz and Z. Yin, Mirror symmetry in three-dimensional theories, SL(2, ℤ) and D-brane moduli spaces, Nucl. Phys. B 493 (1997) 148 [hep-th/9612131] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    T. Nishinaka and Y. Tachikawa, On 4d rank-one \( \mathcal{N} \) = 3 superconformal field theories, JHEP 09 (2016) 116 [arXiv:1602.01503] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    K. Thielemans, A Mathematica package for computing operator product expansions, Int. J. Mod. Phys. C 2 (1991) 787 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    T. Arakawa and A. Moreau, Joseph ideals and lisse minimal W-algebras, arXiv:1506.00710 [INSPIRE].
  51. [51]
    C. Beem and L. Rastelli, Vertex operator algebras, Higgs branches and modular differential equations, arXiv:1707.07679 [INSPIRE].
  52. [52]
    P. Agarwal, A. Sciarappa and J. Song, \( \mathcal{N} \) = 1 Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 211 [arXiv:1707.04751] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    S. Benvenuti and S. Giacomelli, Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 106 [arXiv:1707.05113] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    K. Maruyoshi and J. Song, Enhancement of supersymmetry via renormalization group flow and the superconformal index, Phys. Rev. Lett. 118 (2017) 151602 [arXiv:1606.05632] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs, JHEP 02 (2017) 075 [arXiv:1607.04281] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    P. Agarwal, K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs. Part II: non-principal deformations, JHEP 12 (2016) 103 [arXiv:1610.05311] [INSPIRE].
  57. [57]
    S. Benvenuti and S. Giacomelli, Abelianization and sequential confinement in 2 + 1 dimensions, JHEP 10 (2017) 173 [arXiv:1706.04949] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    K. Ito and H. Shu, ODE/IM correspondence and the Argyres-Douglas theory, JHEP 08 (2017) 071 [arXiv:1707.03596] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    L. Fredrickson, D. Pei, W. Yan and K. Ye, Argyres-Douglas theories, chiral algebras and wild Hitchin characters, JHEP 01 (2018) 150 [arXiv:1701.08782] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Fluder and J. Song, Four-dimensional Lens space index from two-dimensional chiral algebra, arXiv:1710.06029 [INSPIRE].
  61. [61]
    Y. Imamura, Orbifold Schur index and IR formula, arXiv:1710.08853 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Yukawa Institute for Theoretical Physics (YITP)Kyoto UniversityKyotoJapan
  2. 2.Department of Physical Sciences, College of Science and EngineeringRitsumeikan UniversityShigaJapan

Personalised recommendations