CP violation in 2HDM and EFT: the ZZZ vertex

  • Hermès Bélusca-Maïto
  • Adam Falkowski
  • Duarte Fontes
  • Jorge. C. Romão
  • João P. Silva
Open Access
Regular Article - Theoretical Physics


We study the CP violating ZZZ vertex in the two-Higgs doublet model, which is a probe of a Jarlskog-type invariant in the extended Higgs sector. The form factor f 4 Z is evaluated at one loop in a general R ξ gauge and its magnitude is estimated in the realistic parameter space. Then we turn to the decoupling limit of the two-Higgs doublet model, where the extra scalars are heavy and the physics can be described by the Standard Model supplemented by higher-dimensional operators. The leading operator contributing to f 4 Z at one loop is identified. The CP violating ZZZ vertex is not generated in the effective theory by dimension-8 operators, but instead arises only at the dimension-12 level, which implies an additional suppression by powers of the heavy Higgs mass scale.


Beyond Standard Model CP violation Effective Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S.L. Glashow, Partial-symmetries of weak interactions, Nucl. Phys. 22 (1961) 579 [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  10. [10]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    I.F. Ginzburg, M. Krawczyk and P. Osland, Two Higgs doublet models with CP-violation, in Linear colliders. Proceedings, International Workshop on physics and experiments with future electron-positron linear colliders, LCWS 2002, Seogwipo Jeju Island Korea, 26-30 August 2002, pg. 703 [hep-ph/0211371] [INSPIRE].
  12. [12]
    W. Khater and P. Osland, CP violation in top quark production at the LHC and two Higgs doublet models, Nucl. Phys. B 661 (2003) 209 [hep-ph/0302004] [INSPIRE].
  13. [13]
    A.W. El Kaffas, P. Osland and O.M. Ogreid, CP violation, stability and unitarity of the two Higgs doublet model, Nonlin. Phenom. Complex Syst. 10 (2007) 347 [hep-ph/0702097] [INSPIRE].
  14. [14]
    A.W. El Kaffas, W. Khater, O.M. Ogreid and P. Osland, Consistency of the two Higgs doublet model and CP-violation in top production at the LHC, Nucl. Phys. B 775 (2007) 45 [hep-ph/0605142] [INSPIRE].
  15. [15]
    B. Grzadkowski and P. Osland, Tempered two-Higgs-doublet model, Phys. Rev. D 82 (2010) 125026 [arXiv:0910.4068] [INSPIRE].ADSzbMATHGoogle Scholar
  16. [16]
    A. Arhrib, E. Christova, H. Eberl and E. Ginina, CP violation in charged Higgs production and decays in the complex two Higgs doublet model, JHEP 04 (2011) 089 [arXiv:1011.6560] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Barroso, P.M. Ferreira, R. Santos and J.P. Silva, Probing the scalar-pseudoscalar mixing in the 125 GeV Higgs particle with current data, Phys. Rev. D 86 (2012) 015022 [arXiv:1205.4247] [INSPIRE].ADSGoogle Scholar
  18. [18]
    D. Fontes, J.C. Romão and J.P. Silva, hZγ in the complex two Higgs doublet model, JHEP 12 (2014) 043 [arXiv:1408.2534] [INSPIRE].
  19. [19]
    M. Gorbahn, J.M. No and V. Sanz, Benchmarks for Higgs effective theory: extended Higgs sectors, JHEP 10 (2015) 036 [arXiv:1502.07352] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    J. Brehmer, A. Freitas, D. López-Val and T. Plehn, Pushing Higgs effective theory to its limits, Phys. Rev. D 93 (2016) 075014 [arXiv:1510.03443] [INSPIRE].ADSGoogle Scholar
  21. [21]
    D. Egana-Ugrinovic and S. Thomas, Effective theory of Higgs sector vacuum states, arXiv:1512.00144 [INSPIRE].
  22. [22]
    A. Freitas, D. López-Val and T. Plehn, When matching matters: loop effects in Higgs effective theory, Phys. Rev. D 94 (2016) 095007 [arXiv:1607.08251] [INSPIRE].ADSGoogle Scholar
  23. [23]
    H. Bélusca-Maïto, A. Falkowski, D. Fontes, J.C. Romão and J.P. Silva, Higgs EFT for 2HDM and beyond, Eur. Phys. J. C 77 (2017) 176 [arXiv:1611.01112] [INSPIRE].
  24. [24]
    T. Corbett, A. Joglekar, H.-L. Li and J.-H. Yu, Exploring extended scalar sectors with di-Higgs signals: a Higgs EFT perspective, arXiv:1705.02551 [INSPIRE].
  25. [25]
    S. Karmakar and S. Rakshit, Higher dimensional operators in 2HDM, JHEP 10 (2017) 048 [arXiv:1707.00716] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    B. Grzadkowski, O.M. Ogreid and P. Osland, CP-violation in the ZZZ and ZW W vertices at e + e colliders in two-Higgs-doublet models, JHEP 05 (2016) 025 [Erratum ibid. 11 (2017) 002] [arXiv:1603.01388] [INSPIRE].
  27. [27]
    L. Lavoura and J.P. Silva, Fundamental CP-violating quantities in a SU(2) × U(1) model with many Higgs doublets, Phys. Rev. D 50 (1994) 4619 [hep-ph/9404276] [INSPIRE].
  28. [28]
    F.J. Botella and J.P. Silva, Jarlskog-like invariants for theories with scalars and fermions, Phys. Rev. D 51 (1995) 3870 [hep-ph/9411288] [INSPIRE].
  29. [29]
    F. del Aguila, Z. Kunszt and J. Santiago, One-loop effective Lagrangians after matching, Eur. Phys. J. C 76 (2016) 244 [arXiv:1602.00126] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    B. Henning, X. Lu and H. Murayama, One-loop matching and running with covariant derivative expansion, JHEP 01 (2018) 123 [arXiv:1604.01019] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S.A.R. Ellis, J. Quevillon, T. You and Z. Zhang, Mixed heavy-light matching in the universal one-loop effective action, Phys. Lett. B 762 (2016) 166 [arXiv:1604.02445] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Fuentes-Martin, J. Portoles and P. Ruiz-Femenia, Integrating out heavy particles with functional methods: a simplified framework, JHEP 09 (2016) 156 [arXiv:1607.02142] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    Z. Zhang, Covariant diagrams for one-loop matching, JHEP 05 (2017) 152 [arXiv:1610.00710] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    S.A.R. Ellis, J. Quevillon, T. You and Z. Zhang, Extending the universal one-loop effective action: heavy-light coefficients, JHEP 08 (2017) 054 [arXiv:1706.07765] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    G.J. Gounaris and F.M. Renard, Addendum to ‘helicity conservation in gauge boson scattering at high energy’, Phys. Rev. D 73 (2006) 097301 [hep-ph/0604041] [INSPIRE].
  36. [36]
    C. Degrande, A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions, JHEP 02 (2014) 101 [arXiv:1308.6323] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e + e W + W , Nucl. Phys. B 282 (1987) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G.J. Gounaris, J. Layssac and F.M. Renard, Signatures of the anomalous Z γ and ZZ production at the lepton and hadron colliders, Phys. Rev. D 61 (2000) 073013 [hep-ph/9910395] [INSPIRE].
  39. [39]
    D. Chang, W.-Y. Keung and P.B. Pal, CP violation in the cubic coupling of neutral gauge bosons, Phys. Rev. D 51 (1995) 1326 [hep-ph/9407294] [INSPIRE].
  40. [40]
    S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].ADSGoogle Scholar
  41. [41]
    E.A. Paschos, Diagonal neutral currents, Phys. Rev. D 15 (1977) 1966 [INSPIRE].ADSGoogle Scholar
  42. [42]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  43. [43]
    J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment limit in two-Higgs-doublet models: m h = 125 GeV, Phys. Rev. D 92 (2015) 075004 [arXiv:1507.00933] [INSPIRE].ADSGoogle Scholar
  44. [44]
    G. Passarino and M.J.G. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  46. [46]
    R. Mertig, M. Böhm and A. Denner, Feyn Calc: computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    H.H. Patel, Package-X: a Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    D. Fontes et al., Couplings in the complex 2HDM,, (2017).
  49. [49]
    J.C. Romão and J.P. Silva, A resource for signs and Feynman diagrams of the Standard Model, Int. J. Mod. Phys. A 27 (2012) 1230025 [arXiv:1209.6213] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    ATLAS collaboration, ZZ + ′+ ′− cross-section measurements and search for anomalous triple gauge couplings in 13 TeV pp collisions with the ATLAS detector, Phys. Rev. D 97 (2018) 032005 [arXiv:1709.07703] [INSPIRE].
  51. [51]
    CMS collaboration, Measurements of the ppZZ production cross section and the Z → 4ℓ branching fraction and constraints on anomalous triple gauge couplings at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 78 (2018) 165 [arXiv:1709.08601] [INSPIRE].
  52. [52]
    ACME collaboration, J. Baron et al., Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
  53. [53]
    M.A. Perez, J.J. Toscano and J. Wudka, Two photon processes and effective Lagrangians with an extended scalar sector, Phys. Rev. D 52 (1995) 494 [hep-ph/9506457] [INSPIRE].
  54. [54]
    B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP 01 (2016) 023 [arXiv:1412.1837] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
  56. [56]
    A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B 234 (1984)189 [INSPIRE].
  57. [57]
    M.A. Luty, Naive dimensional analysis and supersymmetry, Phys. Rev. D 57 (1998) 1531 [hep-ph/9706235] [INSPIRE].
  58. [58]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, Counting 4π’s in strongly coupled supersymmetry, Phys. Lett. B 412 (1997) 301 [hep-ph/9706275] [INSPIRE].
  59. [59]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  60. [60]
    R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the validity of the effective field theory approach to SM precision tests, JHEP 07 (2016) 144 [arXiv:1604.06444] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.University of Zagreb, Department of PhysicsZagrebCroatia
  2. 2.Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-SaclayOrsayFrance
  3. 3.Departamento de Física e Centro de Física Teórica de Partículas (CFTP), Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations