String pair production in non homogeneous backgrounds

Open Access
Regular Article - Theoretical Physics


We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.


D-branes Nonperturbative Effects Bosonic Strings Gauge-gravity correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E. Brézin and C. Itzykson, Pair production in vacuum by an alternating field, Phys. Rev. D 2 (1970) 1191 [INSPIRE].ADSGoogle Scholar
  2. [2]
    R. Schutzhold, H. Gies and G. Dunne, Dynamically assisted Schwinger mechanism, Phys. Rev. Lett. 101 (2008) 130404 [arXiv:0807.0754] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    S.S. Bulanov, V.D. Mur, N.B. Narozhny, J. Nees and V.S. Popov, Multiple colliding electromagnetic pulses: a way to lower the threshold of e + e pair production from vacuum, Phys. Rev. Lett. 104 (2010) 220404 [arXiv:1003.2623] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    E.S. Fradkin and A.A. Tseytlin, Nonlinear electrodynamics from quantized strings, Phys. Lett. B 163 (1985) 123 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    C.P. Burgess, Open string instability in background electric fields, Nucl. Phys. B 294 (1987) 427 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    C. Bachas and M. Porrati, Pair creation of open strings in an electric field, Phys. Lett. B 296 (1992) 77 [hep-th/9209032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    B. Durin and B. Pioline, Open strings in relativistic ion traps, JHEP 05 (2003) 035 [hep-th/0302159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    G.W. Semenoff and K. Zarembo, Holographic Schwinger effect, Phys. Rev. Lett. 107 (2011) 171601 [arXiv:1109.2920] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Bolognesi, F. Kiefer and E. Rabinovici, Comments on critical electric and magnetic fields from holography, JHEP 01 (2013) 174 [arXiv:1210.4170] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Y. Sato and K. Yoshida, Holographic Schwinger effect in confining phase, JHEP 09 (2013) 134 [arXiv:1306.5512] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    Y. Sato and K. Yoshida, Universal aspects of holographic Schwinger effect in general backgrounds, JHEP 12 (2013) 051 [arXiv:1309.4629] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Kawai, Y. Sato and K. Yoshida, Schwinger pair production rate in confining theories via holography, Phys. Rev. D 89 (2014) 101901 [arXiv:1312.4341] [INSPIRE].ADSGoogle Scholar
  13. [13]
    D. Kawai, Y. Sato and K. Yoshida, A holographic description of the Schwinger effect in a confining gauge theory, Int. J. Mod. Phys. A 30 (2015) 1530026 [arXiv:1504.00459] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    Y. Sato and K. Yoshida, Potential analysis in holographic Schwinger effect, JHEP 08 (2013) 002 [arXiv:1304.7917] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    K. Hashimoto, T. Oka and A. Sonoda, Electromagnetic instability in holographic QCD, JHEP 06 (2015) 001 [arXiv:1412.4254] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    K. Hashimoto, S. Kinoshita, K. Murata and T. Oka, Electric field quench in AdS/CFT, JHEP 09 (2014) 126 [arXiv:1407.0798] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D.D. Dietrich, Worldline holographic Schwinger effect, Phys. Rev. D 90 (2014) 045024 [arXiv:1405.0487] [INSPIRE].ADSGoogle Scholar
  18. [18]
    I.K. Affleck, O. Alvarez and N.S. Manton, Pair production at strong coupling in weak external fields, Nucl. Phys. B 197 (1982) 509 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G.V. Dunne and C. Schubert, Worldline instantons and pair production in inhomogeneous fields, Phys. Rev. D 72 (2005) 105004 [hep-th/0507174] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    A. Ilderton, G. Torgrimsson and J. Wardh, Nonperturbative pair production in interpolating fields, Phys. Rev. D 92 (2015) 065001 [arXiv:1506.09186] [INSPIRE].ADSGoogle Scholar
  21. [21]
    C. Schubert and A. Torrielli, Open string pair creation from worldsheet instantons, J. Phys. A 43 (2010) 402003 [arXiv:1008.2068] [INSPIRE].MathSciNetMATHGoogle Scholar
  22. [22]
    S. Ferrara and M. Porrati, String phase transitions in a strong magnetic field, Mod. Phys. Lett. A 8 (1993) 2497 [hep-th/9306048] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S.P. Kim and D.N. Page, Schwinger pair production in electric and magnetic fields, Phys. Rev. D 73 (2006) 065020 [hep-th/0301132] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    G.V. Dunne, Q.-h. Wang, H. Gies and C. Schubert, Worldline instantons. II. The fluctuation prefactor, Phys. Rev. D 73 (2006) 065028 [hep-th/0602176] [INSPIRE].
  25. [25]
    J. Ambjørn and Y. Makeenko, Remarks on holographic Wilson loops and the Schwinger effect, Phys. Rev. D 85 (2012) 061901 [arXiv:1112.5606] [INSPIRE].ADSGoogle Scholar
  26. [26]
    R. Auzzi, S. Elitzur, S.B. Gudnason and E. Rabinovici, On periodically driven AdS/CFT, JHEP 11 (2013) 016 [arXiv:1308.2132] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of Physics “E. Fermi” University of Pisa, and INFN — Sezione di PisaPisaItaly
  2. 2.Racah Institute of PhysicsThe Hebrew University of JerusalemJerusalemIsrael
  3. 3.Departamento de Ciencias, Facultad de Artes LiberalesUniversidad Adolfo IbáñezSantiagoChile

Personalised recommendations