Advertisement

Holomorphic field realization of SH c and quantum geometry of quiver gauge theories

  • Jean-Emile Bourgine
  • Yutaka Matsuo
  • Hong Zhang
Open Access
Regular Article - Theoretical Physics

Abstract

In the context of 4D/2D dualities, SH c algebra, introduced by Schiffmann and Vasserot, provides a systematic method to analyse the instanton partition functions of \( \mathcal{N}=2 \) supersymmetricgaugetheories. Inthispaper,werewritetheSH c algebrainterms of three holomorphic fields D 0(z), D ±1(z) with which the algebra and its representations are simplified. The instanton partition functions for arbitrary \( \mathcal{N}=2 \) super Yang-Mills theories with A n and A n (1) type quiver diagrams are compactly expressed as a product of four building blocks, Gaiotto state, dilatation, flavor vertex operator and intertwiner which are written in terms of SH c and the orthogonal basis introduced by Alba, Fateev, Litvinov and Tarnopolskiy. These building blocks are characterized by new conditions which generalize the known ones on the Gaiotto state and the Carlsson-Okounkov vertex. Consistency conditions of the inner product give algebraic relations for the chiral ring generating functions defined by Nekrasov, Pestun and Shatashvili. In particular we show the polynomiality of the qq-characters which have been introduced as a deformation of the Yangian characters. These relations define a second quantization of the Seiberg-Witten geometry, and, accordingly, reduce to a Baxter TQ-equation in the Nekrasov-Shatashvili limit of the Omega-background.

Keywords

Conformal and W Symmetry Differential and Algebraic Geometry Gauge Symmetry String Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    O. Schiffmann and E. Vasserot,Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on A 2, Publ. Math-Paris 118 (2013) 213 [arXiv:1202.2756].MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    N. Arbesfeld and O. Schiffmann, A presentation of the deformed W 1+∞ algebra, arXiv:1209.0429.
  3. [3]
    I. Cherednik, Double affine Hecke algebras, Cambridge University Press (2005).Google Scholar
  4. [4]
    I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press (1998).Google Scholar
  5. [5]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Y. Matsuo, C. Rim and H. Zhang, Construction of Gaiotto states with fundamental multiplets through Degenerate DAHA, JHEP 09 (2014) 028 [arXiv:1405.3141] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Kanno, Y. Matsuo and H. Zhang, Extended Conformal Symmetry and Recursion Formulae for Nekrasov Partition Function, JHEP 08 (2013) 028 [arXiv:1306.1523] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Negu¸, Exts and the AGT Relations, arXiv:1510.05482 [INSPIRE].
  10. [10]
    D. Gaiotto, Asymptotically free \( \mathcal{N}=2 \) theories and irregular conformal blocks, J. Phys. Conf. Ser. 462 (2013) 012014 [arXiv:0908.0307] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    E. Carlsson and A. Okounkov, Exts and vertex operators, arXiv:0801.2565.
  12. [12]
    T. Fujimori, T. Kimura, M. Nitta and K. Ohashi, 2d partition function in Ω-background and vortex/instanton correspondence, JHEP 12 (2015) 110 [arXiv:1509.08630] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    V.A. Fateev and S.L. Lukyanov, The Models of Two-Dimensional Conformal Quantum Field Theory with Z n Symmetry, Int. J. Mod. Phys. A 3 (1988) 507 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    M. Fukuda, S. Nakamura, Y. Matsuo and R.-D. Zhu, SH c realization of minimal model CFT: triality, poset and Burge condition, JHEP 11 (2015) 168 [arXiv:1509.01000] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    M. Bershtein and O. Foda, AGT, Burge pairs and minimal models, JHEP 06 (2014) 177 [arXiv:1404.7075] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    K.B. Alkalaev and V.A. Belavin, Conformal blocks of W N minimal models and AGT correspondence, JHEP 07 (2014) 024 [arXiv:1404.7094] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011) 33 [arXiv:1012.1312] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    V.A. Fateev and A.V. Litvinov, Integrable structure, W-symmetry and AGT relation, JHEP 01 (2012) 051 [arXiv:1109.4042] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    R.P. Stanley, Some combinatorial properties of Jack symmetric functions, Adv. Math. 77 (1989) 76.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    B. Estienne, V. Pasquier, R. Santachiara and D. Serban, Conformal blocks in Virasoro and W theories: Duality and the Calogero-Sutherland model, Nucl. Phys. B 860 (2012) 377 [arXiv:1110.1101] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    A. Morozov and A. Smirnov, Towards the Proof of AGT Relations with the Help of the Generalized Jack Polynomials, Lett. Math. Phys. 104 (2014) 585 [arXiv:1307.2576] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    A. Smirnov, Polynomials associated with fixed points on the instanton moduli space, arXiv:1404.5304 [INSPIRE].
  23. [23]
    J.-E. Bourgine, Spherical Hecke algebra in the Nekrasov-Shatashvili limit, JHEP 01 (2015) 114 [arXiv:1407.8341] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, arXiv:0908.4052 [INSPIRE].
  25. [25]
    N. Nekrasov, Crossed instantons and qq-character, at CMSA colloquium, 6 Mar 2015.Google Scholar
  26. [26]
    H. Knight, Spectra of Tensor Products of Finite Dimensional Representations of Yangians, J. Algebra 174 (1995) 187.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    N. Nekrasov, V. Pestun and S. Shatashvili, Quantum geometry and quiver gauge theories, arXiv:1312.6689 [INSPIRE].
  28. [28]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in \( \mathcal{N}=2 \) supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in \( \mathcal{N}=2 \) supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  30. [30]
    A. Marshakov, Seiberg-Witten theory and integrable systems, World Scientific (1999).Google Scholar
  31. [31]
    R. Poghossian, Deforming SW curve, JHEP 04 (2011) 033 [arXiv:1006.4822] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    F. Fucito, J.F. Morales, D.R. Pacifici and R. Poghossian, Gauge theories on Ω-backgrounds from non commutative Seiberg-Witten curves, JHEP 05 (2011) 098 [arXiv:1103.4495] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    F. Fucito, J.F. Morales and D.R. Pacifici, Deformed Seiberg-Witten Curves for ADE Quivers, JHEP 01 (2013) 091 [arXiv:1210.3580] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    J.-E. Bourgine, Large-N techniques for Nekrasov partition functions and AGT conjecture, JHEP 05 (2013) 047 [arXiv:1212.4972] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    P. Dorey, C. Dunning and R. Tateo, The ODE/IM Correspondence, J. Phys. A 40 (2007) R205 [hep-th/0703066] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  36. [36]
    A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral Duality Between Heisenberg Chain and Gaudin Model, Lett. Math. Phys. 103 (2013) 299 [arXiv:1206.6349] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    A. Mironov, A. Morozov, Y. Zenkevich and A. Zotov, Spectral Duality in Integrable Systems from AGT Conjecture, JETP Lett. 97 (2013) 45 [arXiv:1204.0913] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Mironov, A. Morozov and S. Shakirov, Matrix Model Conjecture for Exact BS Periods and Nekrasov Functions, JHEP 02 (2010) 030 [arXiv:0911.5721] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    A. Mironov and A. Morozov, Nekrasov Functions from Exact BS Periods: The Case of SU(N ), J. Phys. A 43 (2010) 195401 [arXiv:0911.2396] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  40. [40]
    A. Mironov and A. Morozov, Nekrasov Functions and Exact Bohr-Zommerfeld Integrals, JHEP 04 (2010) 040 [arXiv:0910.5670] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    N. Nekrasov and V. Pestun, Seiberg-Witten geometry of four dimensional \( \mathcal{N}=2 \) quiver gauge theories, arXiv:1211.2240 [INSPIRE].
  42. [42]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math. 244 (2006) 525 [hep-th/0306238] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    E. Frenkel, V. Kac, A. Radul and W. Wang, W 1+∞ and W (gl(N )) with central charge N , Commun. Math. Phys. 170 (1995) 337.ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    A. Losev, N. Nekrasov and S.L. Shatashvili, Issues in topological gauge theory, Nucl. Phys. B 534 (1998) 549 [hep-th/9711108] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun. Math. Phys. 209 (2000) 97 [hep-th/9712241] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    R. Flume and R. Poghossian, An Algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Int. J. Mod. Phys. A 18 (2003) 2541 [hep-th/0208176] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    S. Baek, P. Ko and W.Y. Song, SUSY breaking mediation mechanisms and (g − 2)μ , BX s γ, BX s + and B sμ + μ , JHEP 03 (2003) 054 [hep-ph/0208112] [INSPIRE].
  48. [48]
    A. Marshakov, A. Mironov and A. Morozov, On non-conformal limit of the AGT relations, Phys. Lett. B 682 (2009) 125 [arXiv:0909.2052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    H. Kanno and Y. Tachikawa, Instanton counting with a surface operator and the chain-saw quiver, JHEP 06 (2011) 119 [arXiv:1105.0357] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    H. Kanno and M. Taki, Generalized Whittaker states for instanton counting with fundamental hypermultiplets, JHEP 05 (2012) 052 [arXiv:1203.1427] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    S. Kanno, Y. Matsuo and S. Shiba, Analysis of correlation functions in Toda theory and AGT-W relation for SU(3) quiver, Phys. Rev. D 82 (2010) 066009 [arXiv:1007.0601] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    N. Drukker and F. Passerini, (de)Tails of Toda CFT, JHEP 04 (2011) 106 [arXiv:1012.1352] [INSPIRE].
  53. [53]
    J.-E. Bourgine and D. Fioravanti, to appear.Google Scholar
  54. [54]
    J.-E. Bourgine and D. Fioravanti, Mayer expansion of the Nekrasov prepotential: The subleading ϵ 2 -order, Nucl. Phys. B 906 (2016) 408 [arXiv:1511.02672] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  55. [55]
    J.-E. Bourgine and D. Fioravanti, Finite ϵ 2 -corrections to the \( \mathcal{N}=2 \) SYM prepotential, Phys. Lett. B 750 (2015) 139 [arXiv:1506.01340] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    J. Ding and K. Iohara, Generalization of Drinfeld quantum affine algebras, Lett. Math. Phys. 41 (1997) 181.MathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    K. Miki, A (q, γ) analog of the W 1+ algebra, J. Math. Phys. 48 (2007) 123520.ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    B. Feigin, E. Feigin, M. Jimbo, T. Miwa and E. Mukhin, Quantum continuous gl : Tensor products of Fock modules and W n characters, arXiv:1002.3113 [INSPIRE].
  59. [59]
    B. Feigin, E. Feigin, M. Jimbo, T. Miwa and E. Mukhin, Quantum continuous gl(): Tensor products of Fock modules and W n characters, J. Math. (Kyoto) 51 (2011) 365.MathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    H. Itoyama, T. Oota and R. Yoshioka, 2d-4d Connection between q-Virasoro/W Block at Root of Unity Limit and Instanton Partition Function on ALE Space, Nucl. Phys. B 877 (2013) 506 [arXiv:1308.2068] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    A.A. Belavin, M.A. Bershtein and G.M. Tarnopolsky, Bases in coset conformal field theory from AGT correspondence and Macdonald polynomials at the roots of unity, JHEP 03 (2013) 019 [arXiv:1211.2788] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    H. Awata and Y. Yamada, Five-dimensional AGT Conjecture and the Deformed Virasoro Algebra, JHEP 01 (2010) 125 [arXiv:0910.4431] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    H. Awata, B. Feigin, A. Hoshino, M. Kanai, J. Shiraishi and S. Yanagida, Notes on Ding-Iohara algebra and AGT conjecture, arXiv:1106.4088 [INSPIRE].
  64. [64]
    R.J. Szabo, \( \mathcal{N}=2 \) gauge theories, instanton moduli spaces and geometric representation theory, arXiv:1507.00685 [INSPIRE].
  65. [65]
    D. Maulik and A. Okounkov, Quantum Groups and Quantum Cohomology, arXiv:1211.1287 [INSPIRE].
  66. [66]
    R.-D. Zhu and Y. Matsuo, Yangian associated with 2D \( \mathcal{N}=1 \) SCFT, PTEP 2015 (2015) 093A01 [arXiv:1504.04150] [INSPIRE].
  67. [67]
    N. Nekrasov, BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and qq-characters, JHEP 03 (2016) 181 [arXiv:1512.05388] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Jean-Emile Bourgine
    • 1
  • Yutaka Matsuo
    • 2
  • Hong Zhang
    • 3
  1. 1.INFN BolognaUniversità di BolognaBolognaItaly
  2. 2.Department of PhysicsThe University of TokyoTokyoJapan
  3. 3.Department of Physics and Center for Quantum Spacetime (CQUeST)Sogang UniversityMapo-guKorea

Personalised recommendations