Large BR(hτ μ) in the MSSM?

  • Daniel Aloni
  • Yosef Nir
  • Emmanuel Stamou
Open Access
Regular Article - Theoretical Physics


We study how large the rate of the lepton-flavor violating Higgs decay hτ μ can be in the (R-parity conserving) MSSM. We make no assumptions, such as universality or alignment, about the flavor structure of the MSSM. We only assume that all couplings and, in particular, the trilinear scalar ones, are perturbative. We take into account lower bounds on the bino and slepton masses from τμγ and h → γγ as well as upper bounds on the trilinear scalar couplings from the requirement that the global minimum is not charge breaking. We find that in highly fine-tuned regions of parameter space, the ratio BR(hτ μ)/BR(hτ τ ) can be enhanced by about three orders of magnitude above the estimate from naive dimensional analysis, but still about two orders of magnitude below the present bound. Thus, if hτ μ is experimentally established to be close to present bounds, the MSSM will be excluded.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    CMS collaboration, Search for lepton-flavour-violating decays of the Higgs boson, Phys. Lett. B 749 (2015) 337 [arXiv:1502.07400] [INSPIRE].
  2. [2]
    ATLAS collaboration, Search for lepton-flavour-violating Hμτ decays of the Higgs boson with the ATLAS detector, JHEP 11 (2015) 211 [arXiv:1508.03372] [INSPIRE].
  3. [3]
    G. Blankenburg, J. Ellis and G. Isidori, Flavour-changing decays of a 125 GeV Higgs-like particle, Phys. Lett. B 712 (2012) 386 [arXiv:1202.5704] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R. Harnik, J. Kopp and J. Zupan, Flavor violating Higgs decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Dery, A. Efrati, Y. Hochberg and Y. Nir, What if BR(hμμ)/BR(hτ τ ) does not equal m μ2/m τ2 ?, JHEP 05 (2013) 039 [arXiv:1302.3229] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Dery, A. Efrati, Y. Nir, Y. Soreq and V. Susič, Model building for flavor changing Higgs couplings, Phys. Rev. D 90 (2014) 115022 [arXiv:1408.1371] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Arhrib, Y. Cheng and O.C.W. Kong, Higgs to μ + τ decay in supersymmetry without R-parity, Europhys. Lett. 101 (2013) 31003 [arXiv:1208.4669] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Arroyo, J.L. Diaz-Cruz, E. Diaz and J.A. Orduz-Ducuara, Flavor violating Higgs signals in the texturized two-Higgs doublet model (2HDM − T x), arXiv:1306.2343 [INSPIRE].
  9. [9]
    A. Celis, V. Cirigliano and E. Passemar, Lepton flavor violation in the Higgs sector and the role of hadronic τ -lepton decays, Phys. Rev. D 89 (2014) 013008 [arXiv:1309.3564] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Falkowski, D.M. Straub and A. Vicente, Vector-like leptons: Higgs decays and collider phenomenology, JHEP 05 (2014) 092 [arXiv:1312.5329] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M.D. Campos, A.E.C. Hernández, H. Päs and E. Schumacher, Higgs → μτ as an indication for S 4 flavor symmetry, Phys. Rev. D 91 (2015) 116011 [arXiv:1408.1652] [INSPIRE].ADSGoogle Scholar
  12. [12]
    D. Aristizabal Sierra and A. Vicente, Explaining the CMS Higgs flavor violating decay excess, Phys. Rev. D 90 (2014) 115004 [arXiv:1409.7690] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J. Heeck, M. Holthausen, W. Rodejohann and Y. Shimizu, Higgs → μτ in Abelian and non-Abelian flavor symmetry models, Nucl. Phys. B 896 (2015) 281 [arXiv:1412.3671] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  14. [14]
    A. Crivellin, G. D’Ambrosio and J. Heeck, Explaining h → μ ± τ , B → K μ + μ and B + μ /BKe + e in a two-Higgs-doublet model with gauged L μL τ,Phys. Rev. Lett. 114 (2015) 151801 [arXiv:1501.00993] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik, N. Košnik and I. Nišandžic, New physics models facing lepton flavor violating Higgs decays at the percent level, JHEP 06 (2015) 108 [arXiv:1502.07784] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. Das and A. Kundu, Two hidden scalars around 125 GeV and h → μτ , Phys. Rev. D 92 (2015) 015009 [arXiv:1504.01125] [INSPIRE].ADSGoogle Scholar
  17. [17]
    F. Bishara, J. Brod, P. Uttayarat and J. Zupan, Nonstandard Yukawa couplings and Higgs portal dark matter, JHEP 01 (2016) 010 [arXiv:1504.04022] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    B. Bhattacherjee, S. Chakraborty and S. Mukherjee, H → τ μ and excess in ttH: connecting the dots in the hope for the first glimpse of BSM Higgs signal, arXiv:1505.02688 [INSPIRE].
  19. [19]
    X.-G. He, J. Tandean and Y.-J. Zheng, Higgs decay h → μτ with minimal flavor violation, JHEP 09 (2015) 093 [arXiv:1507.02673] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    W. Altmannshofer, S. Gori, A.L. Kagan, L. Silvestrini and J. Zupan, Uncovering mass generation through Higgs flavor violation, Phys. Rev. D 93 (2016) 031301 [arXiv:1507.07927] [INSPIRE].ADSGoogle Scholar
  21. [21]
    K. Cheung, W.-Y. Keung and P.-Y. Tseng, Leptoquark induced rare decay amplitudes hτ μ ± and τμγ, Phys. Rev. D 93 (2016) 015010 [arXiv:1508.01897] [INSPIRE].ADSGoogle Scholar
  22. [22]
    E. Arganda, M.J. Herrero, X. Marcano and C. Weiland, Enhancement of the lepton flavor violating Higgs boson decay rates from SUSY loops in the inverse seesaw model, Phys. Rev. D 93 (2016) 055010 [arXiv:1508.04623] [INSPIRE].ADSGoogle Scholar
  23. [23]
    F.J. Botella, G.C. Branco, M. Nebot and M.N. Rebelo, Flavour changing Higgs couplings in a class of two Higgs doublet models, Eur. Phys. J. C 76 (2016) 161 [arXiv:1508.05101] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Baek and K. Nishiwaki, Leptoquark explanation of h → μτ and muon (g − 2), Phys. Rev. D 93 (2016) 015002 [arXiv:1509.07410] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Brignole and A. Rossi, Lepton flavor violating decays of supersymmetric Higgs bosons, Phys. Lett. B 566 (2003) 217 [hep-ph/0304081] [INSPIRE].
  26. [26]
    A. Brignole and A. Rossi, Anatomy and phenomenology of μ-τ lepton flavor violation in the MSSM, Nucl. Phys. B 701 (2004) 3 [hep-ph/0404211] [INSPIRE].
  27. [27]
    E. Arganda, A.M. Curiel, M.J. Herrero and D. Temes, Lepton flavor violating Higgs boson decays from massive seesaw neutrinos, Phys. Rev. D 71 (2005) 035011 [hep-ph/0407302] [INSPIRE].
  28. [28]
    M. Arana-Catania, E. Arganda and M.J. Herrero, Non-decoupling SUSY in LFV Higgs decays: a window to new physics at the LHC, JHEP 09 (2013) 160 [Erratum ibid. 10 (2015) 192] [arXiv:1304.3371] [INSPIRE].
  29. [29]
    J. Rosiek, Complete set of Feynman rules for the MSSM: erratum, hep-ph/9511250 [INSPIRE].
  30. [30]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    CMS collaboration, Search for a standard model-like Higgs boson in the μ + μ and e + e decay channels at the LHC, Phys. Lett. B 744 (2015) 184 [arXiv:1410.6679] [INSPIRE].
  32. [32]
    ATLAS collaboration, Search for the standard model Higgs boson decay to μ + μ with the ATLAS detector, Phys. Lett. B 738 (2014) 68 [arXiv:1406.7663] [INSPIRE].
  33. [33]
    R. Rattazzi and U. Sarid, The unified minimal supersymmetric model with large Yukawa couplings, Phys. Rev. D 53 (1996) 1553 [hep-ph/9505428] [INSPIRE].
  34. [34]
    J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of stau’s, Phys. Lett. B 696 (2011) 92 [Erratum ibid. B 719 (2013) 472] [arXiv:1011.0260] [INSPIRE].
  35. [35]
    W. Altmannshofer, M. Carena, N.R. Shah and F. Yu, Indirect probes of the MSSM after the Higgs discovery, JHEP 01 (2013) 160 [arXiv:1211.1976] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Carena, S. Gori, I. Low, N.R. Shah and C.E.M. Wagner, Vacuum stability and Higgs diphoton decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    W. Altmannshofer, C. Frugiuele and R. Harnik, Fermion hierarchy from sfermion anarchy, JHEP 12 (2014) 180 [arXiv:1409.2522] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E. Arganda, M.J. Herrero, R. Morales and A. Szynkman, Analysis of the h, H, A → τ μ decays induced from SUSY loops within the mass insertion approximation, JHEP 03 (2016) 055 [arXiv:1510.04685] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    N. Craig, F. D’Eramo, P. Draper, S. Thomas and H. Zhang, The hunt for the rest of the Higgs bosons, JHEP 06 (2015) 137 [arXiv:1504.04630] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    Belle collaboration, K. Hayasaka et al., New search for τ → μγ and τ → eγ decays at Belle, Phys. Lett. B 666 (2008) 16 [arXiv:0705.0650] [INSPIRE].
  41. [41]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations