Advertisement

Localizing gauge theories on S d

  • Joseph A. Minahan
Open Access
Regular Article - Theoretical Physics

Abstract

We conjecture the form of the one-loop determinants for localized gauge theories with eight supersymmetries on d-dimensional spheres. Combining this with results for the localized action, we investigate the strong coupling behavior in the large N limit for a continuous range of d. In particular, we find the N dependence of the free energy for supersymmetric Yang-Mills with only a vector multiplet in 3 < d < 4 and for maximally supersymmetric Yang-Mills in 3 < d < 6. We also argue that this gives an effective way to regularize divergences after localization in d = 4 for \( \mathcal{N}=2 \) gauge theories and d = 6 for the maximally supersymmetric case.

Keywords

Supersymmetric gauge theory 1/N Expansion Matrix Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
  2. [2]
    K.G. Wilson and M.E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28 (1972) 240 [INSPIRE].
  3. [3]
    S. Giombi and I.R. Klebanov, Interpolating between a and F , JHEP 03 (2015) 117 [arXiv:1409.1937] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  4. [4]
    L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, Generalized F -theorem and the \( \epsilon \) expansion, JHEP 12 (2015) 155 [arXiv:1507.01960] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Giombi, I.R. Klebanov and G. Tarnopolsky, Conformal QED d , F -theorem and the \( \epsilon \) expansion, J. Phys. A 49 (2016) 135403 [arXiv:1508.06354] [INSPIRE].ADSGoogle Scholar
  6. [6]
    N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with four supercharges, JHEP 08 (2015) 142 [arXiv:1503.02081] [INSPIRE].MathSciNetGoogle Scholar
  7. [7]
    S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Conformal field theories in fractional dimensions, Phys. Rev. Lett. 112 (2014) 141601 [arXiv:1309.5089] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  8. [8]
    L. Di Pietro, Z. Komargodski, I. Shamir and E. Stamou, Quantum electrodynamics in D = 3 from the ε expansion, Phys. Rev. Lett. 116 (2016) 131601 [arXiv:1508.06278] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S.M. Chester, M. Mezei, S.S. Pufu and I. Yaakov, Monopole operators from the 4 − \( \epsilon \) expansion, arXiv:1511.07108 [INSPIRE].
  10. [10]
    H.-C. Kim and S. Kim, M 5-branes from gauge theories on the 5-sphere, JHEP 05 (2013) 144 [arXiv:1206.6339] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    J. Kallen, J.A. Minahan, A. Nedelin and M. Zabzine, N 3 -behavior from 5D Yang-Mills theory, JHEP 10 (2012) 184 [arXiv:1207.3763] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    J.A. Minahan and M. Zabzine, Gauge theories with 16 supersymmetries on spheres, JHEP 03 (2015) 155 [arXiv:1502.07154] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  15. [15]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    W. Siegel, Supersymmetric dimensional regularization via dimensional reduction, Phys. Lett. B 84 (1979) 193 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    D.M. Capper, D.R.T. Jones and P. van Nieuwenhuizen, Regularization by dimensional reduction of supersymmetric and nonsupersymmetric gauge theories, Nucl. Phys. B 167 (1980) 479 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    W. Siegel, Inconsistency of supersymmetric dimensional regularization, Phys. Lett. B 94 (1980) 37 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    L.V. Avdeev, G.A. Chochia and A.A. Vladimirov, On the scope of supersymmetric dimensional regularization, Phys. Lett. B 105 (1981) 272 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    L.V. Avdeev, Noninvariance of regularization by dimensional reduction: an explicit example of supersymmetry breaking, Phys. Lett. B 117 (1982) 317 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    L.V. Avdeev and A.A. Vladimirov, Dimensional regularization and supersymmetry, Nucl. Phys. B 219 (1983) 262 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Källén and M. Zabzine, Twisted supersymmetric 5D Yang-Mills theory and contact geometry, JHEP 05 (2012) 125 [arXiv:1202.1956] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    J. Källén, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    J.G. Russo and K. Zarembo, Evidence for large-N phase transitions in N = 2 theory, JHEP 04 (2013) 065 [arXiv:1302.6968] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    J.G. Russo and K. Zarembo, Massive N = 2 gauge theories at large-N , JHEP 11 (2013) 130 [arXiv:1309.1004] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    A. Nedelin, Phase transitions in 5D super Yang-Mills theory, JHEP 07 (2015) 004 [arXiv:1502.07275] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    M. Blau, Killing spinors and SYM on curved spaces, JHEP 11 (2000) 023 [hep-th/0005098] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    M. Fujitsuka, M. Honda and Y. Yoshida, Maximal super Yang-Mills theories on curved background with off-shell supercharges, JHEP 01 (2013) 162 [arXiv:1209.4320] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    J.A. Minahan, in progress.Google Scholar
  32. [32]
    J. Qiu and M. Zabzine, 5D super Yang-Mills on Y p,q Sasaki-Einstein manifolds, Commun. Math. Phys. 333 (2015) 861 [arXiv:1307.3149] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    A. Kapustin, B. Willett and I. Yaakov, Nonperturbative tests of three-dimensional dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-matrix models and tri-Sasaki Einstein spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J.A. Minahan, A. Nedelin and M. Zabzine, 5D super Yang-Mills theory and the correspondence to AdS 7 /CFT 6, J. Phys. A 46 (2013) 355401 [arXiv:1304.1016] [INSPIRE].MathSciNetMATHGoogle Scholar
  40. [40]
    W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Lüscher, Dimensional regularization in the presence of large background fields, Annals Phys. 142 (1982) 359 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUppsala universityUppsalaSweden

Personalised recommendations