Advertisement

Orthosymplectic Chern-Simons matrix model and chirality projection

  • Sanefumi Moriyama
  • Takao Suyama
Open Access
Regular Article - Theoretical Physics

Abstract

Recently it was found that the density matrix for a certain orthosymplectic Chern-Simons theory matches with that for the ABJM theory with the odd chiral projection. We prove this fact for a general case with the inclusion of fractional branes. We also identify the first few diagonal Gopakumar-Vafa invariants for the grand potential constructed from the chirally projected density matrix.

Keywords

Chern-Simons Theories M-Theory Matrix Models Topological Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    H. Fuji, S. Hirano and S. Moriyama, Summing Up All Genus Free Energy of ABJM Matrix Model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. (2012) P03001 [arXiv:1110.4066] [INSPIRE].
  7. [7]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton Effects in ABJM Theory from Fermi Gas Approach, JHEP 01 (2013) 158 [arXiv:1211.1251] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    F. Calvo and M. Mariño, Membrane instantons from a semiclassical TBA, JHEP 05 (2013) 006 [arXiv:1212.5118] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton Bound States in ABJM Theory, JHEP 05 (2013) 054 [arXiv:1301.5184] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Y. Hatsuda, M. Mariño, S. Moriyama and K. Okuyama, Non-perturbative effects and the refined topological string, JHEP 09 (2014) 168 [arXiv:1306.1734] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    N. Drukker and D. Trancanelli, A Supermatrix model for N = 6 super Chern-Simons-matter theory, JHEP 02 (2010) 058 [arXiv:0912.3006] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    M. Mariño and P. Putrov, Exact Results in ABJM Theory from Topological Strings, JHEP 06 (2010) 011 [arXiv:0912.3074] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    S. Moriyama and T. Nosaka, Partition Functions of Superconformal Chern-Simons Theories from Fermi Gas Approach, JHEP 11 (2014) 164 [arXiv:1407.4268] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Moriyama and T. Nosaka, ABJM membrane instanton from a pole cancellation mechanism, Phys. Rev. D 92 (2015) 026003 [arXiv:1410.4918] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    S. Moriyama and T. Nosaka, Exact Instanton Expansion of Superconformal Chern-Simons Theories from Topological Strings, JHEP 05 (2015) 022 [arXiv:1412.6243] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Grassi, Y. Hatsuda and M. Mariño, Topological Strings from Quantum Mechanics, arXiv:1410.3382 [INSPIRE].
  17. [17]
    K. Okuyama and S. Zakany, TBA-like integral equations from quantized mirror curves, JHEP 03 (2016) 101 [arXiv:1512.06904] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Y. Hatsuda, ABJM on ellipsoid and topological strings, arXiv:1601.02728 [INSPIRE].
  19. [19]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, \( \mathcal{N}=5 \) , 6 Superconformal Chern-Simons Theories and M2-branes on Orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    H. Awata, S. Hirano and M. Shigemori, The Partition Function of ABJ Theory, Prog. Theor. Exp. Phys. 2013 (2013) 053B04 [arXiv:1212.2966] [INSPIRE].
  22. [22]
    M. Honda, Direct derivation of “mirror” ABJ partition function, JHEP 12 (2013) 046 [arXiv:1310.3126] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Matsumoto and S. Moriyama, ABJ Fractional Brane from ABJM Wilson Loop, JHEP 03 (2014) 079 [arXiv:1310.8051] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Honda and K. Okuyama, Exact results on ABJ theory and the refined topological string, JHEP 08 (2014) 148 [arXiv:1405.3653] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    S. Hirano, K. Nii and M. Shigemori, ABJ Wilson loops and Seiberg duality, Prog. Theor. Exp. Phys. 2014 (2014) 113B04 [arXiv:1406.4141] [INSPIRE].
  26. [26]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Exact instanton expansion of the ABJM partition function, Prog. Theor. Exp. Phys. 2015 (2015) 11B104 [arXiv:1507.01678] [INSPIRE].
  27. [27]
    B. Assel, N. Drukker and J. Felix, Partition functions of 3d \( \widehat{D} \) -quivers and their mirror duals from 1d free fermions, JHEP 08 (2015) 071 [arXiv:1504.07636] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S. Moriyama and T. Nosaka, Superconformal Chern-Simons Partition Functions of Affine D-type Quiver from Fermi Gas, JHEP 09 (2015) 054 [arXiv:1504.07710] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    K. Okuyama, Probing non-perturbative effects in M-theory on orientifolds, JHEP 01 (2016) 054 [arXiv:1511.02635] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Moriyama and T. Suyama, Instanton Effects in Orientifold ABJM Theory, JHEP 03 (2016) 034 [arXiv:1511.01660] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Exact Results on the ABJM Fermi Gas, JHEP 10 (2012) 020 [arXiv:1207.4283] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Mezei and S.S. Pufu, Three-sphere free energy for classical gauge groups, JHEP 02 (2014) 037 [arXiv:1312.0920] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Honda and S. Moriyama, Instanton Effects in Orbifold ABJM Theory, JHEP 08 (2014) 091 [arXiv:1404.0676] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Honda, Exact relations between M2-brane theories with and without Orientifolds, arXiv:1512.04335 [INSPIRE].
  35. [35]
    K. Okuyama, Orientifolding of the ABJ Fermi gas, JHEP 03 (2016) 008 [arXiv:1601.03215] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Y. Hatsuda, M. Honda, S. Moriyama and K. Okuyama, ABJM Wilson Loops in Arbitrary Representations, JHEP 10 (2013) 168 [arXiv:1306.4297] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Grassi, Y. Hatsuda and M. Mariño, Quantization conditions and functional equations in ABJ(M) theories, J. Phys. A 49 (2016) 115401 [arXiv:1410.7658] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of Physics, Graduate School of Science, Osaka City University, Osaka City University Advanced Mathematical Institute (OCAMI)OsakaJapan

Personalised recommendations