Advertisement

Dark matter and localised fermions from spherical orbifolds?

  • Giacomo Cacciapaglia
  • Aldo Deandrea
  • Nicolas Deutschmann
Open Access
Regular Article - Theoretical Physics

Abstract

We study a class of six-dimensional models based on positive curvature surfaces (spherical 2-orbifolds) as extra-spaces. Using the Newman-Penrose formalism, we discuss the particle spectrum in this class of models. The fermion spectrum problem, which has been addressed with flux compactifications in the past, can be avoided using localised fermions. In this framework, we find that there are four types of geometry compatible with the existence of a stable dark matter candidate and we study the simplest case in detail. Using the complementarity between collider resonance searches and relic density constraints, we show that this class of models is under tension, unless the model lies in a funnel region characterised by a resonant Higgs s-channel in the dark matter annihilation.

Keywords

Phenomenology of Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Nordstrom, On the possibility of unifying the electromagnetic and the gravitational fields, Phys. Z. 15 (1914) 504 [physics/0702221] [INSPIRE].
  2. [2]
    T. Kaluza, On the problem of unity in physics, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921 (1921) 966 [INSPIRE].Google Scholar
  3. [3]
    O. Klein, Quantum theory and five-dimensional theory of relativity (in German and English), Z. Phys. 37 (1926) 895 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].
  5. [5]
    I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].
  7. [7]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].
  8. [8]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    K. Agashe, A. Falkowski, I. Low and G. Servant, KK parity in warped extra dimension, JHEP 04 (2008) 027 [arXiv:0712.2455] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    A. Ahmed, B. Grzadkowski, J.F. Gunion and Y. Jiang, Higgs dark matter from a warped extra dimension — the truncated-inert-doublet model, JHEP 10 (2015) 033 [arXiv:1504.03706] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, A dark matter candidate from Lorentz invariance in 6D, JHEP 03 (2010) 083 [arXiv:0907.4993] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    B.A. Dobrescu and E. Poppitz, Number of fermion generations derived from anomaly cancellation, Phys. Rev. Lett. 87 (2001) 031801 [hep-ph/0102010] [INSPIRE].
  13. [13]
    N. Maru, T. Nomura, J. Sato and M. Yamanaka, The universal extra dimensional model with S 2 /Z 2 extra-space, Nucl. Phys. B 830 (2010) 414 [arXiv:0904.1909] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    H. Dohi and K.-Y. Oda, Universal extra dimensions on real projective plane, Phys. Lett. B 692 (2010) 114 [arXiv:1004.3722] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    S. Randjbar-Daemi, A. Salam and J.A. Strathdee, Spontaneous compactification in six-dimensional Einstein-Maxwell theory, Nucl. Phys. B 214 (1983) 491 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    J.M. Frère, M.V. Libanov, E.Y. Nugaev and S.V. Troitsky, Fermions in the vortex background on a sphere, JHEP 06 (2003) 009 [hep-ph/0304117] [INSPIRE].
  17. [17]
    J.M. Frère, M. Libanov, S. Mollet and S. Troitsky, Neutrino hierarchy and fermion spectrum from a single family in six dimensions: realistic predictions, JHEP 08 (2013) 078 [arXiv:1305.4320] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J.-M. Frère, M. Libanov, S. Mollet and S. Troitsky, Flavour changing Z signals in a 6D inspired model, arXiv:1505.08017 [INSPIRE].
  19. [19]
    P.T. Winslow, K. Sigurdson and J.N. Ng, Multi-state dark matter from spherical extra dimensions, Phys. Rev. D 82 (2010) 023512 [arXiv:1005.3013] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R. Flurry, Symmetry groups: theory and chemical applications, Prentice-Hall, U.S.A. (1980).Google Scholar
  21. [21]
    M. Rausch de Traubenberg, Clifford algebras in physics, in 7th International Conference on Clifford Algebras and their Applications in Mathematical Physics, Toulouse France May 19-29 2005 [hep-th/0506011] [INSPIRE].
  22. [22]
    B.A. Dobrescu and E. Ponton, Chiral compactification on a square, JHEP 03 (2004) 071 [hep-th/0401032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A. Lichnerowicz, Champs spinoriels et propagateurs en relativité générale (in French), Bull. Soc. Math. France 92 (1964) 11.MathSciNetMATHGoogle Scholar
  24. [24]
    J.H. Conway and D.H. Huson, The orbifold notation for two-dimensional groups, Struct. Chem. 13 (2002) 247.CrossRefGoogle Scholar
  25. [25]
    J.H. Conway, H. Burgiel and C. Goodman-Strauss, The symmetries of things, A.K. Peters Ltd., Wellesley MA U.S.A. (2008).Google Scholar
  26. [26]
    S.M. Carroll and M.M. Guica, Sidestepping the cosmological constant with football shaped extra dimensions, hep-th/0302067 [INSPIRE].
  27. [27]
    A.A. Geraci, S.J. Smullin, D.M. Weld, J. Chiaverini and A. Kapitulnik, Improved constraints on non-Newtonian forces at 10 microns, Phys. Rev. D 78 (2008) 022002 [arXiv:0802.2350] [INSPIRE].ADSGoogle Scholar
  28. [28]
    I.M. Gelfand, R.A. Minlos and Z.J. Shapiro, Representations of the rotation group and of the Lorentz group, and their applications, MacMillan, U.K. (1963).Google Scholar
  29. [29]
    E.T. Newman and R. Penrose, Note on the Bondi-Metzner-Sachs group, J. Math. Phys. 7 (1966) 863 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    R. Penrose and W. Rindler, Spinors and space-time, vol. 1, Cambridge University Press, Cambridge U.K. (1984).CrossRefMATHGoogle Scholar
  31. [31]
    G.T. del Castillo, Spin-weighted spherical harmonics and their applications, Rev. Mex. Fıs. 53 (2007) 125.MathSciNetMATHGoogle Scholar
  32. [32]
    H. Dohi, T. Kakuda, K. Nishiwaki, K.-Y. Oda and N. Okuda, Notes on sphere-based universal extra dimensions, Afr. Rev. Phys. 9 (2014) 0069 [arXiv:1406.1954] [INSPIRE].Google Scholar
  33. [33]
    R. Camporesi and A. Higuchi, On the eigen functions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys. 20 (1996) 1 [gr-qc/9505009] [INSPIRE].
  34. [34]
    A.A. Abrikosov, Jr., Dirac operator on the Riemann sphere, hep-th/0212134 [INSPIRE].
  35. [35]
    L. Nilse, Classification of 1D and 2D orbifolds, hep-ph/0601015 [INSPIRE].
  36. [36]
    H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [INSPIRE].
  37. [37]
    G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, The universal real projective plane: LHC phenomenology at one loop, JHEP 10 (2011) 146 [arXiv:1104.3800] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    L. Da Rold, Radiative corrections in 5D and 6D expanding in winding modes, Phys. Rev. D 69 (2004) 105015 [hep-th/0311063] [INSPIRE].ADSGoogle Scholar
  39. [39]
    G. Cacciapaglia and B. Kubik, Even tiers and resonances on the real projective plane, JHEP 02 (2013) 052 [arXiv:1209.6556] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052005 [arXiv:1405.4123] [INSPIRE].
  41. [41]
    CMS collaboration, Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 04 (2015) 025 [arXiv:1412.6302] [INSPIRE].
  42. [42]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  43. [43]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  45. [45]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  46. [46]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  47. [47]
    B. Dumont et al., Toward a public analysis database for LHC new physics searches using MadAnalysis 5, Eur. Phys. J. C 75 (2015) 56 [arXiv:1407.3278] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    E. Conte, B. Dumont, B. Fuks and C. Wymant, Designing and recasting LHC analyses with MadAnalysis 5, Eur. Phys. J. C 74 (2014) 3103 [arXiv:1405.3982] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    S. Nussinov, Technocosmology: could a technibaryon excess provide a ‘natural’ missing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    K.M. Zurek, Asymmetric dark matter: theories, signatures and constraints, Phys. Rept. 537 (2014) 91 [arXiv:1308.0338] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Arbey, G. Cacciapaglia, A. Deandrea and B. Kubik, Dark matter in a twisted bottle, JHEP 01 (2013) 147 [arXiv:1210.0384] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  56. [56]
    Wolfram Resarch Inc., Mathematica 8, U.S.A. (2010).Google Scholar
  57. [57]
    K. Kong and K.T. Matchev, Precise calculation of the relic density of Kaluza-Klein dark matter in universal extra dimensions, JHEP 01 (2006) 038 [hep-ph/0509119] [INSPIRE].
  58. [58]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Giacomo Cacciapaglia
    • 1
    • 2
  • Aldo Deandrea
    • 1
    • 2
    • 4
  • Nicolas Deutschmann
    • 1
    • 2
    • 3
  1. 1.Université de LyonLyonFrance
  2. 2.Université Lyon 1, CNRS/IN2P3, UMR5822 IPNLVilleurbanne CedexFrance
  3. 3.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Institut Universitaire de FranceParisFrance

Personalised recommendations