Advertisement

The pentabox Master Integrals with the Simplified Differential Equations approach

  • Costas G. Papadopoulos
  • Damiano Tommasini
  • Christopher Wever
Open Access
Regular Article - Theoretical Physics

Abstract

We present the calculation of massless two-loop Master Integrals relevant to five-point amplitudes with one off-shell external leg and derive the complete set of planar Master Integrals with five on-mass-shell legs, that contribute to many 2 → 3 amplitudes of interest at the LHC, as for instance three jet production, γ, V, H + 2 jets etc., based on the Simplified Differential Equations approach.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CMS collaboration, Measurement of the top quark pair production cross section in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 116 (2016) 052002 [arXiv:1510.05302] [INSPIRE].
  2. [2]
    ATLAS collaboration, Measurement of the production cross sections of a Z boson in association with jets in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-041, CERN, Geneva Switzerland (2015).
  3. [3]
    ATLAS collaboration, Measurement of four-jet differential cross sections in \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS detector, JHEP 12 (2015) 105 [arXiv:1509.07335] [INSPIRE].
  4. [4]
    CMS collaboration, Measurement of spin correlations in \( t\overline{t} \) production using the matrix element method in the muon+jets final state in pp collisions at \( \sqrt{s}=8 \) TeV, arXiv:1511.06170 [INSPIRE].
  5. [5]
    J.R. Andersen et al., Les Houches 2013: physics at TeV colliders — standard model working group report, arXiv:1405.1067 [INSPIRE].
  6. [6]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
  7. [7]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].
  8. [8]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].
  9. [9]
    G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    SM MC Working Group, SM and NLO MULTILEG Working Group collaborations, J. Alcaraz Maestre et al., The SM and NLO Multileg and SM MC working groups: summary report, arXiv:1203.6803 [INSPIRE].
  11. [11]
    R.K. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, Phys. Rept. 518 (2012) 141 [arXiv:1105.4319] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    J. Gluza, K. Kajda and D.A. Kosower, Towards a basis for planar two-loop integrals, Phys. Rev. D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].ADSGoogle Scholar
  13. [13]
    D.A. Kosower and K.J. Larsen, Maximal unitarity at two loops, Phys. Rev. D 85 (2012) 045017 [arXiv:1108.1180] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP 10 (2012) 026 [arXiv:1205.0801] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Mastrolia and G. Ossola, On the integrand-reduction method for two-loop scattering amplitudes, JHEP 11 (2011) 014 [arXiv:1107.6041] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S. Badger, H. Frellesvig and Y. Zhang, Hepta-cuts of two-loop scattering amplitudes, JHEP 04 (2012) 055 [arXiv:1202.2019] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Badger, H. Frellesvig and Y. Zhang, A two-loop five-gluon helicity amplitude in QCD, JHEP 12 (2013) 045 [arXiv:1310.1051] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C.G. Papadopoulos, R.H.P. Kleiss and I. Malamos, Reduction at the integrand level beyond NLO, PoS(Corfu2012)019 [INSPIRE].
  19. [19]
    G. ’t Hooft and M.J.G. Veltman, Scalar one loop integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].
  20. [20]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
  22. [22]
    A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].
  23. [23]
    A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A.V. Kotikov, Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated one loop integrals, Phys. Lett. B 302 (1993) 299 [Erratum ibid. B 318 (1993) 649] [hep-ph/9212308] [INSPIRE].
  26. [26]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].ADSGoogle Scholar
  27. [27]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
  28. [28]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Caffo, H. Czyz, S. Laporta and E. Remiddi, The master differential equations for the two loop sunrise selfmass amplitudes, Nuovo Cim. A 111 (1998) 365 [hep-th/9805118] [INSPIRE].ADSGoogle Scholar
  30. [30]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3 jets: the planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].
  31. [31]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3 jets: the nonplanar topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].
  32. [32]
    R. Bonciani, P. Mastrolia and E. Remiddi, Vertex diagrams for the QED form-factors at the two loop level, Nucl. Phys. B 661 (2003) 289 [Erratum ibid. B 702 (2004) 359] [hep-ph/0301170] [INSPIRE].
  33. [33]
    S. Laporta and E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph, Nucl. Phys. B 704 (2005) 349 [hep-ph/0406160] [INSPIRE].
  34. [34]
    R. Bonciani, A. Ferroglia, T. Gehrmann, D. Maître and C. Studerus, Two-loop fermionic corrections to heavy-quark pair production: the quark-antiquark channel, JHEP 07 (2008) 129 [arXiv:0806.2301] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T. Gehrmann, L. Tancredi and E. Weihs, Two-loop master integrals for \( q\overline{q}\to VV \) : the planar topologies, JHEP 08 (2013) 070 [arXiv:1306.6344] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. von Manteuffel and C. Studerus, Massive planar and non-planar double box integrals for light N f contributions to ggtt, JHEP 10 (2013) 037 [arXiv:1306.3504] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    J.M. Henn, K. Melnikov and V.A. Smirnov, Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions, JHEP 05 (2014) 090 [arXiv:1402.7078] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for \( q\overline{q}\to VV \), JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    F. Caola, J.M. Henn, K. Melnikov and V.A. Smirnov, Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons, JHEP 09 (2014) 043 [arXiv:1404.5590] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    C.G. Papadopoulos, D. Tommasini and C. Wever, Two-loop master integrals with the simplified differential equations approach, JHEP 01 (2015) 072 [arXiv:1409.6114] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    T. Gehrmann, A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for \( q{\overline{q}}^{\prime}\to {V}_1{V}_2\to\ 4 \) leptons, JHEP 09 (2015) 128 [arXiv:1503.04812] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C.G. Papadopoulos, Simplified differential equations approach for master integrals, JHEP 07 (2014) 088 [arXiv:1401.6057] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    Analytic results for all two-loop MI in terms of Goncharov polylogarithms together with explicit numerical results, https://www.dropbox.com/s/90iiqfcazrhwtso/results.tgz?dl=0.
  44. [44]
    K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    F.V. Tkachov, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
  47. [47]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
  48. [48]
    V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys. 177 (2002) 1 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett. 116 (2016) 062001 [arXiv:1511.05409] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A.V. Smirnov, FIRE5: a c++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2014) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  52. [52]
    R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04 (2015) 108 [arXiv:1411.0911] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    M. Barkatou and E. Pflügel, On the Moser-and super-reduction algorithms of systems of linear differential equations and their complexity, J. Symb. Comput. 44 (2009) 1017.MathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    M. Barkatou and E. Pflügel, Computing super-irreducible forms of systems of linear differential equations via Moser-reduction: a new approach, in Proceedings of the 2007 international symposium on Symbolic and algebraic computation, ACM, U.S.A. (2007), pg. 1.Google Scholar
  55. [55]
    J. Moser, The order of a singularity in Fuchs’ theory, Math. Zeitschr. 72 (1960) 379.MathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    B. Jantzen, A.V. Smirnov and V.A. Smirnov, Expansion by regions: revealing potential and Glauber regions automatically, Eur. Phys. J. C 72 (2012) 2139 [arXiv:1206.0546] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].
  58. [58]
    T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].
  59. [59]
    G. Heinrich, Sector decomposition, Int. J. Mod. Phys. A 23 (2008) 1457 [arXiv:0803.4177] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    S. Borowka, J. Carter and G. Heinrich, Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0, Comput. Phys. Commun. 184 (2013) 396 [arXiv:1204.4152] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Borowka and G. Heinrich, Massive non-planar two-loop four-point integrals with SecDec 2.1, Comput. Phys. Commun. 184 (2013) 2552 [arXiv:1303.1157] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Borowka, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk and T. Zirke, SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun. 196 (2015) 470 [arXiv:1502.06595] [INSPIRE].
  63. [63]
    E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun. 188 (2014) 148 [arXiv:1403.3385] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    P.A. Baikov, Explicit solutions of the multiloop integral recurrence relations and its application, Nucl. Instrum. Meth. A 389 (1997) 347 [hep-ph/9611449] [INSPIRE].
  65. [65]
    V.A. Smirnov and M. Steinhauser, Solving recurrence relations for multiloop Feynman integrals, Nucl. Phys. B 672 (2003) 199 [hep-ph/0307088] [INSPIRE].
  66. [66]
    H. Ita, Two-loop integrand decomposition into master integrals and surface terms, arXiv:1510.05626 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Costas G. Papadopoulos
    • 1
    • 2
  • Damiano Tommasini
    • 1
  • Christopher Wever
    • 1
    • 3
    • 4
  1. 1.Institute of Nuclear and Particle Physics, NCSR ‘Demokritos’Agia ParaskeviGreece
  2. 2.University of Debrecen and MTA-DE Particle Physics Research GroupDebrecenHungary
  3. 3.Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Institute for Nuclear Physics (IKP), Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations