MSSM A-funnel and the galactic center excess: prospects for the LHC and direct detection experiments

  • Katherine Freese
  • Alejandro López
  • Nausheen R. Shah
  • Bibhushan Shakya
Open Access
Regular Article - Theoretical Physics


The pseudoscalar resonance or “A-funnel” in the Minimal Supersymmetric Standard Model (MSSM) is a widely studied framework for explaining dark matter that can yield interesting indirect detection and collider signals. The well-known Galactic Center excess (GCE) at GeV energies in the gamma ray spectrum, consistent with annihilation of a ≲ 40 GeV dark matter particle, has more recently been shown to be compatible with significantly heavier masses following reanalysis of the background. In this paper, we explore the LHC and direct detection implications of interpreting the GCE in this extended mass window within the MSSM A-funnel framework. We find that compatibility with relic density, signal strength, collider constraints, and Higgs data can be simultaneously achieved with appropriate parameter choices. The compatible regions give very sharp predictions of 200-600 GeV CP-odd/even Higgs bosons at low tan β at the LHC and spin-independent cross sections ≈ 10−11 pb at direct detection experiments. Regardless of consistency with the GCE, this study serves as a useful template of the strong correlations between indirect, direct, and LHC signatures of the MSSM A-funnel region.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    L. Goodenough and D. Hooper, Possible Evidence For Dark Matter Annihilation In The Inner Milky Way From The Fermi Gamma Ray Space Telescope, arXiv:0910.2998 [INSPIRE].
  2. [2]
    D. Hooper and L. Goodenough, Dark Matter Annihilation in The Galactic Center As Seen by the Fermi Gamma Ray Space Telescope, Phys. Lett. B 697 (2011) 412 [arXiv:1010.2752] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Boyarsky, D. Malyshev and O. Ruchayskiy, A comment on the emission from the Galactic Center as seen by the Fermi telescope, Phys. Lett. B 705 (2011) 165 [arXiv:1012.5839] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Hooper and T. Linden, On The Origin Of The Gamma Rays From The Galactic Center, Phys. Rev. D 84 (2011) 123005 [arXiv:1110.0006] [INSPIRE].ADSGoogle Scholar
  5. [5]
    T. Linden, E. Lovegrove and S. Profumo, The Morphology of Hadronic Emission Models for the Gamma-Ray Source at the Galactic Center, Astrophys. J. 753 (2012) 41 [arXiv:1203.3539] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    K.N. Abazajian and M. Kaplinghat, Detection of a Gamma-Ray Source in the Galactic Center Consistent with Extended Emission from Dark Matter Annihilation and Concentrated Astrophysical Emission, Phys. Rev. D 86 (2012) 083511 [Erratum ibid. D 87 (2013) 129902] [arXiv:1207.6047] [INSPIRE].
  7. [7]
    D. Hooper and T.R. Slatyer, Two Emission Mechanisms in the Fermi Bubbles: A Possible Signal of Annihilating Dark Matter, Phys. Dark Univ. 2 (2013) 118 [arXiv:1302.6589] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    C. Gordon and O. Macias, Dark Matter and Pulsar Model Constraints from Galactic Center Fermi-LAT Gamma Ray Observations, Phys. Rev. D 88 (2013) 083521 [arXiv:1306.5725] [INSPIRE].ADSGoogle Scholar
  9. [9]
    K.N. Abazajian, N. Canac, S. Horiuchi and M. Kaplinghat, Astrophysical and Dark Matter Interpretations of Extended Gamma-Ray Emission from the Galactic Center, Phys. Rev. D 90 (2014) 023526 [arXiv:1402.4090] [INSPIRE].ADSGoogle Scholar
  10. [10]
    T. Daylan et al., The characterization of the gamma-ray signal from the central Milky Way: A case for annihilating dark matter, Phys. Dark Univ. 12 (2016) 1 [arXiv:1402.6703] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    B. Zhou et al., GeV excess in the Milky Way: The role of diffuse galactic gamma-ray emission templates, Phys. Rev. D 91 (2015) 123010 [arXiv:1406.6948] [INSPIRE].ADSGoogle Scholar
  12. [12]
    F. Calore, I. Cholis and C. Weniger, Background model systematics for the Fermi GeV excess, JCAP 03 (2015) 038 [arXiv:1409.0042] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. Calore, I. Cholis, C. McCabe and C. Weniger, A Tale of Tails: Dark Matter Interpretations of the Fermi GeV Excess in Light of Background Model Systematics, Phys. Rev. D 91 (2015) 063003 [arXiv:1411.4647] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Abdullah, A. DiFranzo, A. Rajaraman, T.M.P. Tait, P. Tanedo and A.M. Wijangco, Hidden on-shell mediators for the Galactic Center γ-ray excess, Phys. Rev. D 90 (2014) 035004 [arXiv:1404.6528] [INSPIRE].ADSGoogle Scholar
  15. [15]
    P. Agrawal, B. Batell, P.J. Fox and R. Harnik, WIMPs at the Galactic Center, JCAP 05 (2015) 011 [arXiv:1411.2592] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Cahill-Rowley, J. Gainer, J. Hewett and T. Rizzo, Towards a Supersymmetric Description of the Fermi Galactic Center Excess, JHEP 02 (2015) 057 [arXiv:1409.1573] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Achterberg, S. Amoroso, S. Caron, L. Hendriks, R. Ruiz de Austri and C. Weniger, A description of the Galactic Center excess in the Minimal Supersymmetric Standard Model, JCAP 08 (2015) 006 [arXiv:1502.05703] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. Bertone et al., Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II and astroparticle experiments, arXiv:1507.07008 [INSPIRE].
  19. [19]
    S.K. Lee, M. Lisanti, B.R. Safdi, T.R. Slatyer and W. Xue, Evidence for Unresolved γ-Ray Point Sources in the Inner Galaxy, Phys. Rev. Lett. 116 (2016) 051103 [arXiv:1506.05124] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Bartels, S. Krishnamurthy and C. Weniger, Strong support for the millisecond pulsar origin of the Galactic center GeV excess, Phys. Rev. Lett. 116 (2016) 051102 [arXiv:1506.05104] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    D. Gaggero, M. Taoso, A. Urbano, M. Valli and P. Ullio, Towards a realistic astrophysical interpretation of the gamma-ray Galactic center excess, JCAP 12 (2015) 056 [arXiv:1507.06129] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Fermi-LAT collaboration, S. Murgia, Observation of the High Energy Gamma-ray Emission Towards the Galactic Center, Murgia.pdf (2014).
  23. [23]
    Fermi-LAT collaboration, M. Ajello et al., Fermi-LAT Observations of High-Energy γ-Ray Emission Toward the Galactic Center, Astrophys. J. 819 (2016) 44 [arXiv:1511.02938] [INSPIRE].
  24. [24]
    A. Berlin, S. Gori, T. Lin and L.-T. Wang, Pseudoscalar Portal Dark Matter, Phys. Rev. D 92 (2015) 015005 [arXiv:1502.06000] [INSPIRE].
  25. [25]
    C. Cheung, M. Papucci, D. Sanford, N.R. Shah and K.M. Zurek, NMSSM Interpretation of the Galactic Center Excess, Phys. Rev. D 90 (2014) 075011 [arXiv:1406.6372] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S. Ipek, D. McKeen and A.E. Nelson, A Renormalizable Model for the Galactic Center Gamma Ray Excess from Dark Matter Annihilation, Phys. Rev. D 90 (2014) 055021 [arXiv:1404.3716] [INSPIRE].ADSGoogle Scholar
  27. [27]
    ATLAS collaboration, Search for charged Higgs bosons in the τ +jets final state with pp collision data recorded at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, ATLAS-CONF-2013-090 (2013).
  28. [28]
    CMS collaboration, Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 07 (2012) 143 [arXiv:1205.5736] [INSPIRE].
  29. [29]
    A. Berlin, P. Gratia, D. Hooper and S.D. McDermott, Hidden Sector Dark Matter Models for the Galactic Center Gamma-Ray Excess, Phys. Rev. D 90 (2014) 015032 [arXiv:1405.5204] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs Boson: Alignment without Decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Complementarity between Nonstandard Higgs Boson Searches and Precision Higgs Boson Measurements in the MSSM, Phys. Rev. D 91 (2015) 035003 [arXiv:1410.4969] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  33. [33]
    D.M. Asner et al., ILC Higgs White Paper, in Community Summer Study 2013 : Snowmass on the Mississippi. (CSS2013), Minneapolis U.S.A. (2013) [arXiv:1310.0763] [INSPIRE].
  34. [34]
    H.E. Haber, The Higgs data and the Decoupling Limit, in 1st Toyama International Workshop on Higgs as a Probe of New Physics 2013 (HPNP2013), Toyama Japan (2013) [arXiv:1401.0152] [INSPIRE].
  35. [35]
    N. Craig, J. Galloway and S. Thomas, Searching for Signs of the Second Higgs Doublet, arXiv:1305.2424 [INSPIRE].
  36. [36]
    M. Perelstein and B. Shakya, Fine-Tuning Implications of Direct Dark Matter Searches in the MSSM, JHEP 10 (2011) 142 [arXiv:1107.5048] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    S. Amsel, K. Freese and P. Sandick, Probing EWSB Naturalness in Unified SUSY Models with Dark Matter, JHEP 11 (2011) 110 [arXiv:1108.0448] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Perelstein and B. Shakya, XENON100 implications for naturalness in the MSSM, NMSSM and λ-supersymmetry model, Phys. Rev. D 88 (2013) 075003 [arXiv:1208.0833] [INSPIRE].ADSGoogle Scholar
  39. [39]
    MSSM Working Group collaboration, A. Djouadi et al., The Minimal supersymmetric standard model: Group summary report, hep-ph/9901246 [INSPIRE].
  40. [40]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191.ADSGoogle Scholar
  41. [41]
    CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions, JHEP 10 (2014) 160 [arXiv:1408.3316] [INSPIRE].
  42. [42]
    W. Altmannshofer, M. Carena, N.R. Shah and F. Yu, Indirect Probes of the MSSM after the Higgs Discovery, JHEP 01 (2013) 160 [arXiv:1211.1976] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    ATLAS collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \( \sqrt{s}=7 \) and 8 TeV in the ATLAS experiment, Eur. Phys. J. C 76 (2016) 6 [arXiv:1507.04548] [INSPIRE].
  44. [44]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].
  45. [45]
    ATLAS collaboration, Projections for measurements of Higgs boson signal strengths and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2014-016 (2014).
  46. [46]
    CMS collaboration, Projected Performance of an Upgraded CMS Detector at the LHC and HL-LHC: Contribution to the Snowmass Process, in Community Summer Study 2013 : Snowmass on the Mississippi. (CSS2013), Minneapolis U.S.A. (2013) [arXiv:1307.7135] [INSPIRE].
  47. [47]
    N. Blinov and D.E. Morrissey, Vacuum Stability and the MSSM Higgs Mass, JHEP 03 (2014) 106 [arXiv:1310.4174] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Anandakrishnan, B. Shakya and K. Sinha, Dark matter at the pseudoscalar Higgs resonance in the phenomenological MSSM and SUSY GUTs, Phys. Rev. D 91 (2015) 035029 [arXiv:1410.0356] [INSPIRE].ADSGoogle Scholar
  49. [49]
    D. Hooper, C. Kelso, P. Sandick and W. Xue, Closing Supersymmetric Resonance Regions With Direct Detection Experiments, Phys. Rev. D 88 (2013) 015010 [arXiv:1304.2417] [INSPIRE].ADSGoogle Scholar
  50. [50]
    T. Han, Z. Liu and A. Natarajan, Dark matter and Higgs bosons in the MSSM, JHEP 11 (2013) 008 [arXiv:1303.3040] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Hisano, K. Ishiwata and N. Nagata, Gluon contribution to the dark matter direct detection, Phys. Rev. D 82 (2010) 115007 [arXiv:1007.2601] [INSPIRE].ADSGoogle Scholar
  52. [52]
    C. Cheung, L.J. Hall, D. Pinner and J.T. Ruderman, Prospects and Blind Spots for Neutralino Dark Matter, JHEP 05 (2013) 100 [arXiv:1211.4873] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    Y.G. Kim, T. Nihei, L. Roszkowski and R. Ruiz de Austri, Upper and lower limits on neutralino WIMP mass and spin independent scattering cross-section and impact of new (g-2)(mu) measurement, JHEP 12 (2002) 034 [hep-ph/0208069] [INSPIRE].
  54. [54]
    XENON100 collaboration, E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data, Phys. Rev. Lett. 111 (2013) 021301 [arXiv:1301.6620] [INSPIRE].
  55. [55]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  56. [56]
    Fermi-LAT collaboration, M. Ackermann et al., Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  57. [57]
    A. Geringer-Sameth et al., Indication of Gamma-ray Emission from the Newly Discovered Dwarf Galaxy Reticulum II, Phys. Rev. Lett. 115 (2015) 081101 [arXiv:1503.02320] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    DES collaboration, K. Bechtol et al., Eight New Milky Way Companions Discovered in First-Year Dark Energy Survey Data, Astrophys. J. 807 (2015) 50 [arXiv:1503.02584] [INSPIRE].
  59. [59]
    DES, Fermi-LAT collaboration, A. Drlica-Wagner et al., Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data, Astrophys. J. 809 (2015) L4 [arXiv:1503.02632] [INSPIRE].
  60. [60]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
  61. [61]
    K. Kong and J.-C. Park, Bounds on dark matter interpretation of Fermi-LAT GeV excess, Nucl. Phys. B 888 (2014) 154 [arXiv:1404.3741] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    T. Bringmann, M. Vollmann and C. Weniger, Updated cosmic-ray and radio constraints on light dark matter: Implications for the GeV gamma-ray excess at the Galactic center, Phys. Rev. D 90 (2014) 123001 [arXiv:1406.6027] [INSPIRE].ADSGoogle Scholar
  63. [63]
    M. Cirelli, D. Gaggero, G. Giesen, M. Taoso and A. Urbano, Antiproton constraints on the GeV gamma-ray excess: a comprehensive analysis, JCAP 12 (2014) 045 [arXiv:1407.2173] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M. Cirelli and G. Giesen, Antiprotons from Dark Matter: Current constraints and future sensitivities, JCAP 04 (2013) 015 [arXiv:1301.7079] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Perelstein and B. Shakya, Antiprotons from Dark Matter: Effects of a Position-Dependent Diffusion Coefficient, Phys. Rev. D 83 (2011) 123508 [arXiv:1012.3772] [INSPIRE].ADSGoogle Scholar
  66. [66]
    N. Fornengo, L. Maccione and A. Vittino, Constraints on particle dark matter from cosmic-ray antiprotons, JCAP 04 (2014) 003 [arXiv:1312.3579] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    IceCube collaboration, M.G. Aartsen et al., Search for Dark Matter Annihilation in the Galactic Center with IceCube-79, Eur. Phys. J. C 75 (2015) 492 [arXiv:1505.07259] [INSPIRE].
  68. [68]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].
  70. [70]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-Precision Predictions for the Light CP -Even Higgs Boson Mass of the Minimal Supersymmetric Standard Model, Phys. Rev. Lett. 112 (2014) 141801 [arXiv:1312.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].
  72. [72]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].
  73. [73]
    S. Heinemeyer, W. Hollik and G. Weiglein, The Masses of the neutral CP - even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].
  74. [74]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].
  75. [75]
    ATLAS collaboration, Beyond-the-Standard-Model Higgs boson searches at a High-Luminosity LHC with ATLAS, ATLAS-PHYS-PUB-2013-016 (2013).
  76. [76]
    CMS collaboration, 2HDM Neutral Higgs Future Analysis Studies, CMS-PAS-FTR-13-024 (2013).
  77. [77]
    A. Djouadi, L. Maiani, A. Polosa, J. Quevillon and V. Riquer, Fully covering the MSSM Higgs sector at the LHC, JHEP 06 (2015) 168 [arXiv:1502.05653] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 744 (2015) 163 [arXiv:1502.04478] [INSPIRE].
  79. [79]
    CMS collaboration, Search for a pseudoscalar boson decaying into a Z boson and the 125 GeV Higgs boson in \( {\ell}^{+}{\ell}^{-}b\overline{b} \) final states, Phys. Lett. B 748 (2015) 221 [arXiv:1504.04710] [INSPIRE].
  80. [80]
    CMS collaboration, M. Pelliccioni, CMS High mass WW and ZZ Higgs search with the complete LHC Run1 statistics, arXiv:1505.03831 [INSPIRE].
  81. [81]
    N. Craig, F. D’Eramo, P. Draper, S. Thomas and H. Zhang, The Hunt for the Rest of the Higgs Bosons, JHEP 06 (2015) 137 [arXiv:1504.04630] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    J. Hajer, Y.-Y. Li, T. Liu and J.F.H. Shiu, Heavy Higgs Bosons at 14 TeV and 100 TeV, JHEP 11 (2015) 124 [arXiv:1504.07617] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    J.L. Feng et al., Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier, arXiv:1401.6085 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Katherine Freese
    • 1
    • 2
    • 3
  • Alejandro López
    • 3
  • Nausheen R. Shah
    • 3
    • 4
  • Bibhushan Shakya
    • 3
  1. 1.Nordita (Nordic Institute for Theoretical Physics)KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  2. 2.The Oskar Klein Center for Cosmoparticle PhysicsAlbaNova University Center, University of StockholmStockholmSweden
  3. 3.Michigan Center for Theoretical Physics, Department of PhysicsUniversity of MichiganAnn ArborU.S.A.
  4. 4.Department of Physics and AstronomyWayne State UniversityDetroitU.S.A.

Personalised recommendations