Enhanced Higgs mass in Compact Supersymmetry

  • Kohsaku Tobioka
  • Ryuichiro Kitano
  • Hitoshi Murayama
Open Access
Regular Article - Theoretical Physics


The current LHC results make weak scale supersymmetry difficult due to relatively heavy mass of the discovered Higgs boson and the null results of new particle searches. Geometrical supersymmetry breaking from extra dimensions, Scherk-Schwarz mechanism, is possible to accommodate such situations. A concrete example, the Compact Supersymmetry model, has a compressed spectrum ameliorating the LHC bounds and large mixing in the top and scalar top quark sector with \( \left|{A}_t\right|\sim 2{m}_{\tilde{t}} \) which radiatively raises the Higgs mass. While the zero mode contribution of the model has been considered, in this paper we calculate the Kaluza-Klein tower effect to the Higgs mass. Although such contributions are naively expected to be as small as a percent level for 10 TeV Kaluza-Klein modes, we find the effect significantly enhances the radiative correction to the Higgs quartic coupling by from 10 to 50%. This is mainly because the top quark wave function is pushed out from the brane, which makes the top mass depend on higher powers in the Higgs field. As a result the Higgs mass is enhanced up to 15 GeV from the previous calculation. We also show the whole parameter space is testable at the LHC run II.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1 [hep-ph/9709356] [INSPIRE].
  2. [2]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  3. [3]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  4. [4]
    ATLAS, CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  5. [5]
    L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.R. Espinosa and M. Quirós, On Higgs boson masses in nonminimal supersymmetric standard models, Phys. Lett. B 279 (1992) 92 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Y. Nomura, D. Poland and B. Tweedie, μB-driven electroweak symmetry breaking, Phys. Lett. B 633 (2006) 573 [hep-ph/0509244] [INSPIRE].
  8. [8]
    M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [INSPIRE].ADSGoogle Scholar
  9. [9]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    X. Lu, H. Murayama, J.T. Ruderman and K. Tobioka, A Natural Higgs Mass in Supersymmetry from NonDecoupling Effects, Phys. Rev. Lett. 112 (2014) 191803 [arXiv:1308.0792] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Batra, A. Delgado, D.E. Kaplan and T.M.P. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].
  12. [12]
    A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127] [INSPIRE].
  13. [13]
    R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, The Minimal supersymmetric fat Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349] [INSPIRE].
  14. [14]
    R. Kitano and Y. Nakai, Emergent Higgs from hidden dimensions, JHEP 04 (2013) 106 [arXiv:1212.2726] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    R. Kitano, M.A. Luty and Y. Nakai, Partially Composite Higgs in Supersymmetry, JHEP 08 (2012) 111 [arXiv:1206.4053] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the Messenger of Supersymmetry Breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].ADSGoogle Scholar
  17. [17]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].
  18. [18]
    T.J. LeCompte and S.P. Martin, Compressed supersymmetry after 1/fb at the Large Hadron Collider, Phys. Rev. D 85 (2012) 035023 [arXiv:1111.6897] [INSPIRE].ADSGoogle Scholar
  19. [19]
    H. Murayama, Y. Nomura, S. Shirai and K. Tobioka, Compact Supersymmetry, Phys. Rev. D 86 (2012) 115014 [arXiv:1206.4993] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J. Fan, M. Reece and J.T. Ruderman, Stealth Supersymmetry, JHEP 11 (2011) 012 [arXiv:1105.5135] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Fan, M. Reece and J.T. Ruderman, A Stealth Supersymmetry Sampler, JHEP 07 (2012) 196 [arXiv:1201.4875] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].
  23. [23]
    C. Csáki, Y. Grossman and B. Heidenreich, MFV SUSY: A Natural Theory for R-Parity Violation, Phys. Rev. D 85 (2012) 095009 [arXiv:1111.1239] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J.T. Ruderman, T.R. Slatyer and N. Weiner, A Collective Breaking of R-Parity, JHEP 09 (2013) 094 [arXiv:1207.5787] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    B. Bhattacherjee, J.L. Evans, M. Ibe, S. Matsumoto and T.T. Yanagida, Natural supersymmetry’s last hope: R-parity violation via UDD operators, Phys. Rev. D 87 (2013) 115002 [arXiv:1301.2336] [INSPIRE].ADSGoogle Scholar
  26. [26]
    C. Csáki, E. Kuflik and T. Volansky, Dynamical R-Parity Violation, Phys. Rev. Lett. 112 (2014) 131801 [arXiv:1309.5957] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Scherk and J.H. Schwarz, Spontaneous Breaking of Supersymmetry Through Dimensional Reduction, Phys. Lett. B 82 (1979) 60 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    R. Barbieri, L.J. Hall and Y. Nomura, A constrained standard model from a compact extra dimension, Phys. Rev. D 63 (2001) 105007 [hep-ph/0011311] [INSPIRE].
  30. [30]
    I. Antoniadis, S. Dimopoulos, A. Pomarol and M. Quirós, Soft masses in theories with supersymmetry breaking by TeV compactification, Nucl. Phys. B 544 (1999) 503 [hep-ph/9810410] [INSPIRE].
  31. [31]
    A. Delgado, A. Pomarol and M. Quirós, Supersymmetry and electroweak breaking from extra dimensions at the TeV scale, Phys. Rev. D 60 (1999) 095008 [hep-ph/9812489] [INSPIRE].
  32. [32]
    N. Arkani-Hamed, L.J. Hall, Y. Nomura, D. Tucker-Smith and N. Weiner, Finite radiative electroweak symmetry breaking from the bulk, Nucl. Phys. B 605 (2001) 81 [hep-ph/0102090] [INSPIRE].
  33. [33]
    D.M. Ghilencea and H.-P. Nilles, Quadratic divergences in Kaluza-Klein theories, Phys. Lett. B 507 (2001) 327 [hep-ph/0103151] [INSPIRE].
  34. [34]
    A. Delgado, G. von Gersdorff, P. John and M. Quirós, One loop Higgs mass finiteness in supersymmetric Kaluza-Klein theories, Phys. Lett. B 517 (2001) 445 [hep-ph/0104112] [INSPIRE].
  35. [35]
    R. Contino and L. Pilo, A note on regularization methods in Kaluza-Klein theories, Phys. Lett. B 523 (2001) 347 [hep-ph/0104130] [INSPIRE].
  36. [36]
    R. Barbieri, L.J. Hall and Y. Nomura, Models of Scherk-Schwarz symmetry breaking in 5-D: Classification and calculability, Nucl. Phys. B 624 (2002) 63 [hep-th/0107004] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    A. Masiero, C.A. Scrucca, M. Serone and L. Silvestrini, Nonlocal symmetry breaking in Kaluza-Klein theories, Phys. Rev. Lett. 87 (2001) 251601 [hep-ph/0107201] [INSPIRE].
  38. [38]
    A. Delgado, G. von Gersdorff and M. Quirós, Two loop Higgs mass in supersymmetric Kaluza-Klein theories, Nucl. Phys. B 613 (2001) 49 [hep-ph/0107233] [INSPIRE].
  39. [39]
    H.D. Kim, To be (finite) or not to be, that is the question: ‘Kaluza-Klein contribution to the Higgs mass’, hep-ph/0106072 [INSPIRE].
  40. [40]
    E.A. Mirabelli and M.E. Peskin, Transmission of supersymmetry breaking from a four-dimensional boundary, Phys. Rev. D 58 (1998) 065002 [hep-th/9712214] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    A. Pomarol and M. Quirós, The Standard model from extra dimensions, Phys. Lett. B 438 (1998) 255 [hep-ph/9806263] [INSPIRE].
  42. [42]
    Z. Chacko and M.A. Luty, Radion mediated supersymmetry breaking, JHEP 05 (2001) 067 [hep-ph/0008103] [INSPIRE].
  43. [43]
    R. Barbieri, L.J. Hall and Y. Nomura, Softly broken supersymmetric desert from orbifold compactification, Phys. Rev. D 66 (2002) 045025 [hep-ph/0106190] [INSPIRE].
  44. [44]
    A. Delgado, A. Pomarol and M. Quirós, Electroweak and flavor physics in extensions of the standard model with large extra dimensions, JHEP 01 (2000) 030 [hep-ph/9911252] [INSPIRE].
  45. [45]
    A. Delgado and M. Quirós, Supersymmetry and finite radiative electroweak breaking from an extra dimension, Nucl. Phys. B 607 (2001) 99 [hep-ph/0103058] [INSPIRE].
  46. [46]
    R. Barbieri, G. Marandella and M. Papucci, Breaking the electroweak symmetry and supersymmetry by a compact extra dimension, Phys. Rev. D 66 (2002) 095003 [hep-ph/0205280] [INSPIRE].
  47. [47]
    R. Barbieri, G. Marandella and M. Papucci, The Higgs mass as a function of the compactification scale, Nucl. Phys. B 668 (2003) 273 [hep-ph/0305044] [INSPIRE].
  48. [48]
    R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].
  49. [49]
    S. Dimopoulos, K. Howe and J. March-Russell, Maximally Natural Supersymmetry, Phys. Rev. Lett. 113 (2014) 111802 [arXiv:1404.7554] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    G. Burdman, Z. Chacko, H.-S. Goh and R. Harnik, Folded supersymmetry and the LEP paradox, JHEP 02 (2007) 009 [hep-ph/0609152] [INSPIRE].
  51. [51]
    T. Cohen, N. Craig, H.K. Lou and D. Pinner, Folded Supersymmetry with a Twist, arXiv:1508.05396 [INSPIRE].
  52. [52]
    R. Barbieri and A. Strumia, The ‘LEP paradox’, hep-ph/0007265 [INSPIRE].
  53. [53]
    D. Marti and A. Pomarol, Supersymmetric theories with compact extra dimensions in N = 1 superfields, Phys. Rev. D 64 (2001) 105025 [hep-th/0106256] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    D.E. Kaplan and N. Weiner, Radion mediated supersymmetry breaking as a Scherk-Schwarz theory, hep-ph/0108001 [INSPIRE].
  55. [55]
    N. Arkani-Hamed, T. Gregoire and J.G. Wacker, Higher dimensional supersymmetry in 4−D superspace, JHEP 03 (2002) 055 [hep-th/0101233] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    J.A. Bagger, F. Feruglio and F. Zwirner, Generalized symmetry breaking on orbifolds, Phys. Rev. Lett. 88 (2002) 101601 [hep-th/0107128] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].
  58. [58]
    H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [INSPIRE].
  59. [59]
    H.E. Haber and R. Hempfling, The renormalization group improved Higgs sector of the minimal supersymmetric model, Phys. Rev. D 48 (1993) 4280 [hep-ph/9307201] [INSPIRE].
  60. [60]
    M. Carena, J.R. Espinosa, M. Quirós and C.E.M. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].
  61. [61]
    M. Carena, J.R. Ellis, A. Pilaftsis and C.E.M. Wagner, Renormalization group improved effective potential for the MSSM Higgs sector with explicit CP-violation, Nucl. Phys. B 586 (2000) 92 [hep-ph/0003180] [INSPIRE].
  62. [62]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].
  63. [63]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  64. [64]
  65. [65]
  66. [66]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].
  67. [67]
    A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett. 102 (2009) 111802 [arXiv:0807.2405] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004 [arXiv:0905.4749] [INSPIRE].ADSGoogle Scholar
  69. [69]
    W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen and I. Niessen, Soft-gluon resummation for squark and gluino hadroproduction, JHEP 12 (2009) 041 [arXiv:0909.4418] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    W. Beenakker et al., Squark and Gluino Hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637 [arXiv:1105.1110] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: A program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].
  72. [72]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  73. [73]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  74. [74]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].
  75. [75]
    H. Murayama, M.M. Nojiri and K. Tobioka, Improved discovery of a nearly degenerate model: MUED using MT2 at the LHC, Phys. Rev. D 84 (2011) 094015 [arXiv:1107.3369] [INSPIRE].ADSGoogle Scholar
  76. [76]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].
  77. [77]
    J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Model-Independent Jets plus Missing Energy Searches, Phys. Rev. D 79 (2009) 015005 [arXiv:0809.3264] [INSPIRE].ADSGoogle Scholar
  78. [78]
    K. Rolbiecki and K. Sakurai, Constraining compressed supersymmetry using leptonic signatures, JHEP 10 (2012) 071 [arXiv:1206.6767] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    H.K. Dreiner, M. Krämer and J. Tattersall, How low can SUSY go? Matching, monojets and compressed spectra, Europhys. Lett. 99 (2012) 61001 [arXiv:1207.1613] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    H. Dreiner, M. Krämer and J. Tattersall, Exploring QCD uncertainties when setting limits on compressed supersymmetric spectra, Phys. Rev. D 87 (2013) 035006 [arXiv:1211.4981] [INSPIRE].ADSGoogle Scholar
  81. [81]
    B. Bhattacherjee, A. Choudhury, K. Ghosh and S. Poddar, Compressed supersymmetry at 14 TeV LHC, Phys. Rev. D 89 (2014) 037702 [arXiv:1308.1526] [INSPIRE].ADSGoogle Scholar
  82. [82]
    S. Mukhopadhyay, M.M. Nojiri and T.T. Yanagida, Compressed SUSY search at the 13 TeV LHC using kinematic correlations and structure of ISR jets, JHEP 10 (2014) 12 [arXiv:1403.6028] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    C. Han and M. Park, Revealing the jet substructure in a compressed spectrum, arXiv:1507.07729 [INSPIRE].
  84. [84]
    K. Tobioka, Aspects of Supersymmetry after LHC Run I, Ph.D. Thesis (2015), arXiv:1511.04099 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Kohsaku Tobioka
    • 1
    • 2
    • 3
  • Ryuichiro Kitano
    • 3
    • 4
    • 5
  • Hitoshi Murayama
    • 5
    • 6
    • 7
  1. 1.Raymond and Beverly Sackler School of Physics and AstronomyTel-Aviv UniversityTel-AvivIsrael
  2. 2.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael
  3. 3.Theory Center, High Energy Accelerator Research Organization (KEK)TsukubaJapan
  4. 4.The Graduate University for Advanced Studies (Sokendai)TsukubaJapan
  5. 5.Kavli Institute for the Physics and Mathematics of the Universe (WPI)University of Tokyo Institutes for Advanced Study, University of TokyoKashiwaJapan
  6. 6.Department of PhysicsUniversity of California, BerkeleyBerkeleyU.S.A.
  7. 7.Theoretical Physics GroupLawrence Berkeley National LaboratoryBerkeleyU.S.A.

Personalised recommendations