Advertisement

Chiral magnetic effect in the anisotropic quark-gluon plasma

Open Access
Regular Article - Theoretical Physics

Abstract

An anisotropic thermal plasma phase of a strongly coupled gauge theory can be holographically modelled by an anisotropic AdS black hole. The temperature and anisotropy parameter of the AdS black hole background of interest [1] is specified by the location of the horizon and the value of the Dilaton field at the horizon. Interestingly, for the first time, we obtain two functions for the values of the horizon and Dilaton field in terms of the temperature and anisotropy parameter. Then by introducing a number of spinning probe D7-branes in the anisotropic background, we compute the value of the chiral magnetic effect (CME). We observe that in the isotropic and anisotropic plasma the value of the CME is equal for the massless quarks. However, at fixed temperature, raising the anisotropy in the system will increase the value of the CME for the massive quarks.

Keywords

D-branes AdS-CFT Correspondence Holography and quark-gluon plasmas 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Mateos and D. Trancanelli, Thermodynamics and instabilities of a strongly coupled anisotropic plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  2. [2]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].
  3. [3]
    D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    Y. Burnier, D.E. Kharzeev, J. Liao and H.-U. Yee, Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark-gluon plasma in heavy ion collisions, Phys. Rev. Lett. 107 (2011) 052303 [arXiv:1103.1307] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.F. Taghavi and U.A. Wiedemann, Chiral magnetic wave in an expanding QCD fluid, Phys. Rev. C 91 (2015) 024902 [arXiv:1310.0193] [INSPIRE].ADSGoogle Scholar
  6. [6]
    ALICE collaboration, R. Belmont, Charge-dependent anisotropic flow studies and the search for the chiral magnetic wave in ALICE, Nucl. Phys. A 931 (2014) 981 [arXiv:1408.1043] [INSPIRE].Google Scholar
  7. [7]
    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    J.-Y. Ollitrault, Relativistic hydrodynamics for heavy-ion collisions, Eur. J. Phys. 29 (2008) 275 [arXiv:0708.2433] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    R. Snellings, Elliptic flow: a brief review, New J. Phys. 13 (2011) 055008 [arXiv:1102.3010] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Luzum, Flow fluctuations and long-range correlations: elliptic flow and beyond, J. Phys. G 38 (2011) 124026 [arXiv:1107.0592] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Kharzeev, Parity violation in hot QCD: why it can happen and how to look for it, Phys. Lett. B 633 (2006) 260 [hep-ph/0406125] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    D. Kharzeev and A. Zhitnitsky, Charge separation induced by P-odd bubbles in QCD matter, Nucl. Phys. A 797 (2007) 67 [arXiv:0706.1026] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions:event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].ADSGoogle Scholar
  18. [18]
    D.E. Kharzeev, Topologically induced local P and CP-violation in QCD × QED, Annals Phys. 325 (2010) 205 [arXiv:0911.3715] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    V. Voronyuk et al., (Electro-)magnetic field evolution in relativistic heavy-ion collisions, Phys. Rev. C 83 (2011) 054911 [arXiv:1103.4239] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    C. Hoyos, T. Nishioka and A. O’Bannon, A chiral magnetic effect from AdS/CFT with flavor, JHEP 10 (2011) 084 [arXiv:1106.4030] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes in AdS/CFT, JHEP 04 (2006) 015 [hep-th/0512125] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    S.-Y. Wu and D.-L. Yang, Holographic photon production with magnetic field in anisotropic plasmas, JHEP 08 (2013) 032 [arXiv:1305.5509] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Ali-Akbari and D. Allahbakhshi, Meson life time in the anisotropic quark-gluon plasma, JHEP 06 (2014) 115 [arXiv:1404.5790] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    D. Giataganas and H. Soltanpanahi, Heavy quark diffusion in strongly coupled anisotropic plasmas, JHEP 06 (2014) 047 [arXiv:1312.7474] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    V. Jahnke, A. Luna, L. Patiño and D. Trancanelli, More on thermal probes of a strongly coupled anisotropic plasma, JHEP 01 (2014) 149 [arXiv:1311.5513] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    K.B. Fadafan, D. Giataganas and H. Soltanpanahi, The imaginary part of the static potential in strongly coupled anisotropic plasma, JHEP 11 (2013) 107 [arXiv:1306.2929] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S.I. Finazzo and J. Noronha, Estimates for the thermal width of heavy quarkonia in strongly coupled plasmas from holography, JHEP 11 (2013) 042 [arXiv:1306.2613] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    I. Gahramanov, T. Kalaydzhyan and I. Kirsch, Anisotropic hydrodynamics, holography and the chiral magnetic effect, Phys. Rev. D 85 (2012) 126013 [arXiv:1203.4259] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Ali-Akbari and S.F. Taghavi, α -corrected chiral magnetic effect, Nucl. Phys. B 872 (2013) 127 [arXiv:1209.5900] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    S. Nakamura, Nonequilibrium phase transitions and nonequilibrium critical point from AdS/CFT, Phys. Rev. Lett. 109 (2012) 120602 [arXiv:1204.1971] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Ali-Akbari and A. Vahedi, Non-equilibrium phase transition from AdS/CFT, Nucl. Phys. B 877 (2013) 95 [arXiv:1305.3713] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    S.R. Das, T. Nishioka and T. Takayanagi, Probe branes, time-dependent couplings and thermalization in AdS/CFT, JHEP 07 (2010) 071 [arXiv:1005.3348] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    M. Ali-Akbari, H. Ebrahim and Z. Rezaei, Probe branes thermalization in external electric and magnetic fields, Nucl. Phys. B 878 (2014) 150 [arXiv:1307.5629] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    K.-Y. Kim, J.P. Shock and J. Tarrio, The open string membrane paradigm with external electromagnetic fields, JHEP 06 (2011) 017 [arXiv:1103.4581] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    M. Ali-Akbari and H. Ebrahim, Chiral symmetry breaking: to probe anisotropy and magnetic field in quark-gluon plasma, Phys. Rev. D 89 (2014) 065029 [arXiv:1309.4715] [INSPIRE].ADSGoogle Scholar
  38. [38]
    S. Chakraborty and N. Haque, Holographic quark-antiquark potential in hot, anisotropic Yang-Mills plasma, Nucl. Phys. B 874 (2013) 821 [arXiv:1212.2769] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in nonsupersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  40. [40]
    A. O’Bannon, Toward a holographic model of superconducting fermions, JHEP 01 (2009) 074 [arXiv:0811.0198] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    V.G. Filev, C.V. Johnson, R.C. Rashkov and K.S. Viswanathan, Flavoured large-N gauge theory in an external magnetic field, JHEP 10 (2007) 019 [hep-th/0701001] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of PhysicsShahid Beheshti University, G.C. EvinTehranIran
  2. 2.School of Particles and AcceleratorsInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations