Schrödinger geometries arising from Yang-Baxter deformations

Open Access
Regular Article - Theoretical Physics

Abstract

We present further examples of the correspondence between deformed AdS5×S5 solutions of type IIB supergravity and classical r-matrices satisfying the classical YangBaxter equation (CYBE). In the previous works, classical r-matrices have been composed of generators of only one of either so(2, 4) or so(6) . In this paper, we consider some examples of r-matrices with both of them. The r-matrices of this kind contain (generalized) Schrödinger spacetimes and gravity duals of dipole theories. It is known that the generalized Schrödinger spacetimes can also be obtained via a certain class of TsT transformations called null Melvin twists. The metric and NS-NS two-form are reproduced by following the Yang-Baxter sigma-model description.

Keywords

AdS-CFT Correspondence Integrable Field Theories Sigma Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetMATHGoogle Scholar
  2. [2]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  3. [3]
    R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS 5 × S 5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [INSPIRE].ADSMATHGoogle Scholar
  4. [4]
    I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [INSPIRE].ADSGoogle Scholar
  5. [5]
    C. Klimčík, Yang-Baxter σ-models and dS/AdS T duality, JHEP 12 (2002) 051 [hep-th/0210095] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    C. Klimčík, On integrability of the Yang-Baxter σ-model, J. Math. Phys. 50 (2009) 043508 [arXiv:0802.3518] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  7. [7]
    C. Klimčík, Integrability of the bi-Yang-Baxter σ-model, Lett. Math. Phys. 104 (2014) 1095 [arXiv:1402.2105] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  8. [8]
    I. Kawaguchi and K. Yoshida, Hidden Yangian symmetry in σ-model on squashed sphere, JHEP 11 (2010) 032 [arXiv:1008.0776] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  9. [9]
    I. Kawaguchi and K. Yoshida, Hybrid classical integrability in squashed σ-models, Phys. Lett. B 705 (2011) 251 [arXiv:1107.3662] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    I. Kawaguchi and K. Yoshida, Hybrid classical integrable structure of squashed σ-models: A short summary, J. Phys. Conf. Ser. 343 (2012) 012055 [arXiv:1110.6748] [INSPIRE].Google Scholar
  11. [11]
    I. Kawaguchi, T. Matsumoto and K. Yoshida, The classical origin of quantum affine algebra in squashed σ-models, JHEP 04 (2012) 115 [arXiv:1201.3058] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  12. [12]
    I. Kawaguchi, T. Matsumoto and K. Yoshida, On the classical equivalence of monodromy matrices in squashed σ-model, JHEP 06 (2012) 082 [arXiv:1203.3400] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    F. Delduc, M. Magro and B. Vicedo, On classical q-deformations of integrable σ-models, JHEP 11 (2013) 192 [arXiv:1308.3581] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  14. [14]
    F. Delduc, M. Magro and B. Vicedo, Integrable double deformation of the principal chiral model, Nucl. Phys. B 891 (2015) 312 [arXiv:1410.8066] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  15. [15]
    I. Kawaguchi, D. Orlando and K. Yoshida, Yangian symmetry in deformed WZNW models on squashed spheres, Phys. Lett. B 701 (2011) 475 [arXiv:1104.0738] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    I. Kawaguchi and K. Yoshida, A deformation of quantum affine algebra in squashed Wess-Zumino-Novikov-Witten models, J. Math. Phys. 55 (2014) 062302 [arXiv:1311.4696] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  17. [17]
    K. Sfetsos, Integrable interpolations: From exact CFTs to non-Abelian T-duals, Nucl. Phys. B 880 (2014) 225 [arXiv:1312.4560] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  18. [18]
    T. Matsumoto and K. Yoshida, Yang-Baxter σ-models based on the CYBE, Nucl. Phys. B 893 (2015) 287 [arXiv:1501.03665] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  19. [19]
    I. Kawaguchi and K. Yoshida, Classical integrability of Schrödinger σ-models and q-deformed Poincaré symmetry, JHEP 11 (2011) 094 [arXiv:1109.0872] [INSPIRE].ADSMATHGoogle Scholar
  20. [20]
    I. Kawaguchi and K. Yoshida, Exotic symmetry and monodromy equivalence in Schrödinger σ-models, JHEP 02 (2013) 024 [arXiv:1209.4147] [INSPIRE].ADSMATHGoogle Scholar
  21. [21]
    I. Kawaguchi, T. Matsumoto and K. Yoshida, Schroedinger σ-models and Jordanian twists, JHEP 08 (2013) 013 [arXiv:1305.6556] [INSPIRE].ADSMATHGoogle Scholar
  22. [22]
    T. Kameyama and K. Yoshida, String theories on warped AdS backgrounds and integrable deformations of spin chains, JHEP 05 (2013) 146 [arXiv:1304.1286] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  23. [23]
    S. Schäfer-Nameki, M. Yamazaki and K. Yoshida, Coset Construction for Duals of Non-relativistic CFTs, JHEP 05 (2009) 038 [arXiv:0903.4245] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    D. Orlando, S. Reffert and L.I. Uruchurtu, Classical Integrability of the Squashed Three-sphere, Warped AdS3 and Schroedinger Spacetime via T-duality, J. Phys. A 44 (2011) 115401 [arXiv:1011.1771] [INSPIRE].ADSMATHGoogle Scholar
  25. [25]
    F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS 5 × S 5 superstring action, Phys. Rev. Lett. 112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].ADSGoogle Scholar
  26. [26]
    F. Delduc, M. Magro and B. Vicedo, Derivation of the action and symmetries of the q-deformed AdS 5 × S 5 superstring, JHEP 10 (2014) 132 [arXiv:1406.6286] [INSPIRE].ADSMATHGoogle Scholar
  27. [27]
    I. Kawaguchi, T. Matsumoto and K. Yoshida, Jordanian deformations of the AdS 5 × S 5 superstring, JHEP 04 (2014) 153 [arXiv:1401.4855] [INSPIRE].ADSGoogle Scholar
  28. [28]
    O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069 [hep-th/0503201] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    A. Hashimoto and N. Itzhaki, Noncommutative Yang-Mills and the AdS/CFT correspondence, Phys. Lett. B 465 (1999) 142 [hep-th/9907166] [INSPIRE].ADSMATHGoogle Scholar
  31. [31]
    J.M. Maldacena and J.G. Russo, Large-N limit of noncommutative gauge theories, JHEP 09 (1999) 025 [hep-th/9908134] [INSPIRE].ADSMATHGoogle Scholar
  32. [32]
    T. Matsumoto and K. Yoshida, Lunin-Maldacena backgrounds from the classical Yang-Baxter equationtowards the gravity/CYBE correspondence, JHEP 06 (2014) 135 [arXiv:1404.1838] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  33. [33]
    T. Matsumoto and K. Yoshida, Integrability of classical strings dual for noncommutative gauge theories, JHEP 06 (2014) 163 [arXiv:1404.3657] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  34. [34]
    T. Matsumoto and K. Yoshida, Integrable deformations of the AdS 5 × S 5 superstring and the classical Yang-Baxter equationTowards the gravity/CYBE correspondence, J. Phys. Conf. Ser. 563 (2014) 012020 [arXiv:1410.0575] [INSPIRE].Google Scholar
  35. [35]
    T. Matsumoto and K. Yoshida, Yang-Baxter deformations and string dualities, JHEP 03 (2015) 137 [arXiv:1412.3658] [INSPIRE].MathSciNetGoogle Scholar
  36. [36]
    I. Kawaguchi, T. Matsumoto and K. Yoshida, A Jordanian deformation of AdS space in type IIB supergravity, JHEP 06 (2014) 146 [arXiv:1402.6147] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  37. [37]
    P.M. Crichigno, T. Matsumoto and K. Yoshida, Deformations of T 1,1 as Yang-Baxter σ-models, JHEP 12 (2014) 085 [arXiv:1406.2249] [INSPIRE].ADSGoogle Scholar
  38. [38]
    P. Basu and L.A. Pando Zayas, Chaos Rules out Integrability of Strings in AdS 5 × T 1,1, Phys. Lett. B 700 (2011) 243 [arXiv:1103.4107] [INSPIRE].ADSGoogle Scholar
  39. [39]
    C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  41. [41]
    A. Adams, K. Balasubramanian and J. McGreevy, Hot Spacetimes for Cold Atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [INSPIRE].ADSGoogle Scholar
  42. [42]
    N. Bobev and A. Kundu, Deformations of Holographic Duals to Non-Relativistic CFTs, JHEP 07 (2009) 098 [arXiv:0904.2873] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    N. Bobev, A. Kundu and K. Pilch, Supersymmetric IIB Solutions with Schrödinger Symmetry, JHEP 07 (2009) 107 [arXiv:0905.0673] [INSPIRE].ADSGoogle Scholar
  44. [44]
    A. Bergman and O.J. Ganor, Dipoles, twists and noncommutative gauge theory, JHEP 10 (2000) 018 [hep-th/0008030] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  45. [45]
    K. Dasgupta, O.J. Ganor and G. Rajesh, Vector deformations of N = 4 super Yang-Mills theory, pinned branes and arched strings, JHEP 04 (2001) 034 [hep-th/0010072] [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    A. Bergman, K. Dasgupta, O.J. Ganor, J.L. Karczmarek and G. Rajesh, Nonlocal field theories and their gravity duals, Phys. Rev. D 65 (2002) 066005 [hep-th/0103090] [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    M. Alishahiha and O.J. Ganor, Twisted backgrounds, PP waves and nonlocal field theories, JHEP 03 (2003) 006 [hep-th/0301080] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    E. Imeroni, On deformed gauge theories and their string/M-theory duals, JHEP 10 (2008) 026 [arXiv:0808.1271] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  49. [49]
    D.T. Son, Toward an AdS/cold atoms correspondence: A geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].ADSGoogle Scholar
  50. [50]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  51. [51]
    C.R. Hagen, Scale and conformal transformations in galilean-covariant field theory, Phys. Rev. D 5 (1972) 377 [INSPIRE].ADSGoogle Scholar
  52. [52]
    U. Niederer, The maximal kinematical invariance group of the free Schrödinger equation., Helv. Phys. Acta 45 (1972) 802 [INSPIRE].MathSciNetGoogle Scholar
  53. [53]
    Y. Nishida and D.T. Son, Nonrelativistic conformal field theories, Phys. Rev. D 76 (2007) 086004 [arXiv:0706.3746] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    D. Giataganas and K. Sfetsos, Non-integrability in non-relativistic theories, JHEP 06 (2014) 018 [arXiv:1403.2703] [INSPIRE].ADSGoogle Scholar
  55. [55]
    S.A. Hartnoll and K. Yoshida, Families of IIB duals for nonrelativistic CFTs, JHEP 12 (2008) 071 [arXiv:0810.0298] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  56. [56]
    M. Sakaguchi and K. Yoshida, Super Schroedinger algebra in AdS/CFT, J. Math. Phys. 49 (2008) 102302 [arXiv:0805.2661] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  57. [57]
    M. Sakaguchi and K. Yoshida, More super Schrödinger algebras from PSU(2, 2|4), JHEP 08 (2008) 049 [arXiv:0806.3612] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M. Sakaguchi and K. Yoshida, Supersymmetric Extensions of Non-Relativistic Scaling Algebras, Symmetry 4 (2012) 517.MathSciNetMATHGoogle Scholar
  59. [59]
    J. Jeong, E. Ó Colgáin and K. Yoshida, SUSY properties of warped AdS 3, JHEP 06 (2014) 036 [arXiv:1402.3807] [INSPIRE].ADSGoogle Scholar
  60. [60]
    T. Matsumoto and K. Yoshida, in preparation.Google Scholar
  61. [61]
    G. Arutyunov and S. Frolov, Superstrings on AdS 4 × CP 3 as a Coset σ-model, JHEP 09 (2008) 129 [arXiv:0806.4940] [INSPIRE].ADSMATHGoogle Scholar
  62. [62]
    B. Stefanski Jr., Green-Schwarz action for Type IIA strings on AdS 4 × CP 3, Nucl. Phys. B 808 (2009) 80 [arXiv:0806.4948] [INSPIRE].ADSMATHGoogle Scholar
  63. [63]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  64. [64]
    Y. Nakayama, M. Sakaguchi and K. Yoshida, Non-Relativistic M2-brane Gauge Theory and New Superconformal Algebra, JHEP 04 (2009) 096 [arXiv:0902.2204] [INSPIRE].ADSGoogle Scholar
  65. [65]
    K.-M. Lee, S. Lee and S. Lee, Nonrelativistic Superconformal M2-Brane Theory, JHEP 09 (2009) 030 [arXiv:0902.3857] [INSPIRE].ADSMathSciNetGoogle Scholar
  66. [66]
    H. Ooguri and C.-S. Park, Supersymmetric non-relativistic geometries in M-theory, Nucl. Phys. B 824 (2010) 136 [arXiv:0905.1954] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  67. [67]
    J. Jeong, H.-C. Kim, S. Lee, E. O Colgain and H. Yavartanoo, Schrödinger invariant solutions of M-theory with Enhanced Supersymmetry, JHEP 03 (2010) 034 [arXiv:0911.5281] [INSPIRE].ADSMATHGoogle Scholar
  68. [68]
    T. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. B 184 (1987) 59.ADSMathSciNetGoogle Scholar
  69. [69]
    T.H. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [INSPIRE].ADSMathSciNetGoogle Scholar
  70. [70]
    P. Meessen and T. Ortín, An \( \mathrm{S}\mathrm{L}\left(2,\mathbb{Z}\right) \) multiplet of nine-dimensional type-II supergravity theories, Nucl. Phys. B 541 (1999) 195 [hep-th/9806120] [INSPIRE].ADSMathSciNetMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Institute for Advanced Research and Department of MathematicsNagoya UniversityNagoyaJapan
  2. 2.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations