Yukawa hierarchies at the point of E8 in F-theory

  • Fernando Marchesano
  • Diego Regalado
  • Gianluca Zoccarato
Open Access
Regular Article - Theoretical Physics

Abstract

We analyse the structure of Yukawa couplings in local SU(5) F-theory models with E8 enhancement. In this setting the E8 symmetry is broken down to SU(5) by a 7-brane configuration described by T-branes, all the Yukawa couplings are generated in the vicinity of a point and only one family of quarks and leptons is massive at tree-level. The other two families obtain their masses when non-perturbative effects are taken into account, being hierarchically lighter than the third family. However, and contrary to previous results, we find that this hierarchy of fermion masses is not always appropriate to reproduce measured data. We find instead that different T-brane configurations breaking E8 to SU(5) give rise to distinct hierarchical patterns for the holomorphic Yukawa couplings. Only some of these patterns allow to fit the observed fermion masses with reasonable local model parameter values, adding further constraints to the construction of F-theory GUTs. We consider an E8 model where such appropriate hierarchy is realised and compute its physical Yukawas, showing that realistic charged fermions masses can indeed be obtained in this case.

Keywords

F-Theory Quark Masses and SM Parameters GUT 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Donagi and M. Wijnholt, Model building with F-theory, Adv. Theor. Math. Phys. 15 (2011) 1237 [arXiv:0802.2969] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theoryI, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theoryII: experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, Adv. Theor. Math. Phys. 15 (2011) 1523 [arXiv:0808.2223] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    L.E. Ibáñez and A.M. Uranga, String theory and particle physics. An introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012).Google Scholar
  6. [6]
    R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    F. Marchesano, Progress in D-brane model building, Fortsch. Phys. 55 (2007) 491 [hep-th/0702094] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K.S. Vaudrevange, From strings to the MSSM, Eur. Phys. J. C 59 (2009) 249 [arXiv:0806.3905] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    L.E. Ibáñez, From strings to the LHC: Les Houches lectures on string phenomenology, arXiv:1204.5296 [INSPIRE].
  11. [11]
    A.N. Schellekens, Life at the interface of particle physics and string theory, Rev. Mod. Phys. 85 (2013) 1491 [arXiv:1306.5083] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.J. Heckman, Particle physics implications of F-theory, Ann. Rev. Nucl. Part. Sci. 60 (2010) 237 [arXiv:1001.0577] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    M. Wijnholt, Higgs bundles and string phenomenology, Proc. Symp. Pure Math. 85 (2012) 275 [arXiv:1201.2520] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  15. [15]
    G.K. Leontaris, Aspects of F-theory GUTs, PoS(CORFU2011)095 [arXiv:1203.6277] [INSPIRE].
  16. [16]
    A. Maharana and E. Palti, Models of particle physics from type IIB string theory and F-theory: a review, Int. J. Mod. Phys. A 28 (2013) 1330005 [arXiv:1212.0555] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    F. Quevedo, Local string models and moduli stabilisation, Mod. Phys. Lett. A 30 (2015) 1530004 [arXiv:1404.5151] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    F. Denef, M.R. Douglas and S. Kachru, Physics of string flux compactifications, Ann. Rev. Nucl. Part. Sci. 57 (2007) 119 [hep-th/0701050] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Aldazábal, L.E. Ibáñez, F. Quevedo and A.M. Uranga, D-branes at singularities: a bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    J.J. Heckman and C. Vafa, Flavor hierarchy from F-theory, Nucl. Phys. B 837 (2010) 137 [arXiv:0811.2417] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    H. Hayashi, T. Kawano, R. Tatar and T. Watari, Codimension-3 singularities and Yukawa couplings in F-theory, Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    L. Randall and D. Simmons-Duffin, Quark and lepton flavor physics from F-theory, arXiv:0904.1584 [INSPIRE].
  25. [25]
    A. Font and L.E. Ibáñez, Matter wave functions and Yukawa couplings in F-theory grand unification, JHEP 09 (2009) 036 [arXiv:0907.4895] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    S. Cecotti, M.C.N. Cheng, J.J. Heckman and C. Vafa, Yukawa couplings in F-theory and non-commutative geometry, arXiv:0910.0477 [INSPIRE].
  27. [27]
    J.P. Conlon and E. Palti, Aspects of flavour and supersymmetry in F-theory GUTs, JHEP 01 (2010) 029 [arXiv:0910.2413] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, Flavor structure in F-theory compactifications, JHEP 08 (2010) 036 [arXiv:0910.2762] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    F. Marchesano and L. Martucci, Non-perturbative effects on seven-brane Yukawa couplings, Phys. Rev. Lett. 104 (2010) 231601 [arXiv:0910.5496] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G.K. Leontaris and G.G. Ross, Yukawa couplings and fermion mass structure in F-theory GUTs, JHEP 02 (2011) 108 [arXiv:1009.6000] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-branes and monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    C.-C. Chiou, A.E. Faraggi, R. Tatar and W. Walters, T-branes and Yukawa couplings, JHEP 05 (2011) 023 [arXiv:1101.2455] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    L. Aparicio, A. Font, L.E. Ibáñez and F. Marchesano, Flux and instanton effects in local F-theory models and hierarchical fermion masses, JHEP 08 (2011) 152 [arXiv:1104.2609] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    A. Font, L.E. Ibáñez, F. Marchesano and D. Regalado, Non-perturbative effects and Yukawa hierarchies in F-theory SU(5) unification, JHEP 03 (2013) 140 [Erratum ibid. 07 (2013) 036] [arXiv:1211.6529] [INSPIRE].
  35. [35]
    A. Font, F. Marchesano, D. Regalado and G. Zoccarato, Up-type quark masses in SU(5) F-theory models, JHEP 11 (2013) 125 [arXiv:1307.8089] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    E. Palti, Wavefunctions and the point of E 8 in F-theory, JHEP 07 (2012) 065 [arXiv:1203.4490] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    F. Marchesano, P. McGuirk and G. Shiu, Open string wavefunctions in warped compactifications, JHEP 04 (2009) 095 [arXiv:0812.2247] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    F. Marchesano, P. McGuirk and G. Shiu, Chiral matter wavefunctions in warped compactifications, JHEP 05 (2011) 090 [arXiv:1012.2759] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    P.G. Cámara, E. Dudas and E. Palti, Massive wavefunctions, proton decay and FCNCs in local F-theory GUTs, JHEP 12 (2011) 112 [arXiv:1110.2206] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    L.E. Ibáñez, F. Marchesano, D. Regalado and I. Valenzuela, The intermediate scale MSSM, the Higgs mass and F-theory unification, JHEP 07 (2012) 195 [arXiv:1206.2655] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    P.G. Cámara, L.E. Ibáñez and I. Valenzuela, The string origin of SUSY flavor violation, JHEP 10 (2013) 092 [arXiv:1307.3104] [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    P.G. Cámara, L.E. Ibáñez and I. Valenzuela, Flux-induced soft terms on type IIB/F-theory matter curves and hypercharge dependent scalar masses, JHEP 06 (2014) 119 [arXiv:1404.0817] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Font and L.E. Ibáñez, Yukawa structure from U(1) fluxes in F-theory grand unification, JHEP 02 (2009) 016 [arXiv:0811.2157] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    E. Dudas and E. Palti, Froggatt-Nielsen models from E 8 in F-theory GUTs, JHEP 01 (2010) 127 [arXiv:0912.0853] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  45. [45]
    S. Krippendorf, M.J. Dolan, A. Maharana and F. Quevedo, D-branes at toric singularities: model building, Yukawa couplings and flavour physics, JHEP 06 (2010) 092 [arXiv:1002.1790] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    S. Krippendorf, D.K. Mayorga Pena, P.-K. Oehlmann and F. Ruehle, Rational F-theory GUTs without exotics, JHEP 07 (2014) 013 [arXiv:1401.5084] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    N.C. Bizet, A. Klemm and D.V. Lopes, Landscaping with fluxes and the E 8 Yukawa point in F-theory, arXiv:1404.7645 [INSPIRE].
  48. [48]
    D. Klevers, D.K. Mayorga Pena, P.-K. Oehlmann, H. Piragua and J. Reuter, F-theory on all toric hypersurface fibrations and its Higgs branches, JHEP 01 (2015) 142 [arXiv:1408.4808] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    I. García-Etxebarria, T.W. Grimm and J. Keitel, Yukawas and discrete symmetries in F-theory compactifications without section, JHEP 11 (2014) 125 [arXiv:1408.6448] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    C. Mayrhofer, E. Palti, O. Till and T. Weigand, Discrete gauge symmetries by higgsing in four-dimensional F-theory compactifications, JHEP 12 (2014) 068 [arXiv:1408.6831] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Cvetič, R. Donagi, D. Klevers, H. Piragua and M. Poretschkin, F-theory vacua with Z 3 gauge symmetry, arXiv:1502.06953 [INSPIRE].
  52. [52]
    D. Cremades, L.E. Ibáñez and F. Marchesano, Yukawa couplings in intersecting D-brane models, JHEP 07 (2003) 038 [hep-th/0302105] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    D. Cremades, L.E. Ibáñez and F. Marchesano, Computing Yukawa couplings from magnetized extra dimensions, JHEP 05 (2004) 079 [hep-th/0404229] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J.J. Heckman, A. Tavanfar and C. Vafa, The point of E 8 in F-theory GUTs, JHEP 08 (2010) 040 [arXiv:0906.0581] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  55. [55]
    R. Donagi and M. Wijnholt, Gluing branes, I, JHEP 05 (2013) 068 [arXiv:1104.2610] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    R. Donagi and M. Wijnholt, Gluing branes II: flavour physics and string duality, JHEP 05 (2013) 092 [arXiv:1112.4854] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    L.B. Anderson, J.J. Heckman and S. Katz, T-branes and geometry, JHEP 05 (2014) 080 [arXiv:1310.1931] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    A. Collinucci and R. Savelli, T-branes as branes within branes, arXiv:1410.4178 [INSPIRE].
  59. [59]
    A. Collinucci and R. Savelli, F-theory on singular spaces, arXiv:1410.4867 [INSPIRE].
  60. [60]
    R. Donagi and M. Wijnholt, Higgs bundles and UV completion in F-theory, Commun. Math. Phys. 326 (2014) 287 [arXiv:0904.1218] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, Monodromies, fluxes and compact three-generation F-theory GUTs, JHEP 08 (2009) 046 [arXiv:0906.4672] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, Compact F-theory GUTs with U(1)PQ, JHEP 04 (2010) 095 [arXiv:0912.0272] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    E. Dudas and E. Palti, On hypercharge flux and exotics in F-theory GUTs, JHEP 09 (2010) 013 [arXiv:1007.1297] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    M.J. Dolan, J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory GUTs with U(1) symmetries: generalities and survey, Phys. Rev. D 84 (2011) 066008 [arXiv:1102.0290] [INSPIRE].ADSGoogle Scholar
  65. [65]
    F. Baume, E. Palti and S. Schwieger, On E 8 and F-theory GUTs, arXiv:1502.03878 [INSPIRE].
  66. [66]
    B.M. McCoy, C.A. Tracy and T.T. Wu, Painlevé functions of the third kind, J. Math. Phys. 18 (1977) 1058 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  67. [67]
    G. Ross and M. Serna, Unification and fermion mass structure, Phys. Lett. B 664 (2008) 97 [arXiv:0704.1248] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    V. Bouchard, J.J. Heckman, J. Seo and C. Vafa, F-theory and neutrinos: Kaluza-Klein dilution of flavor hierarchy, JHEP 01 (2010) 061 [arXiv:0904.1419] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    J.E. Kim and H.P. Nilles, The μ problem and the strong CP problem, Phys. Lett. B 138 (1984) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    G.F. Giudice and A. Masiero, A natural solution to the μ problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Fernando Marchesano
    • 1
  • Diego Regalado
    • 2
  • Gianluca Zoccarato
    • 1
    • 3
  1. 1.Instituto de Física Teórica UAM-CSICMadridSpain
  2. 2.Max-Planck-Institut für PhysikMunichGermany
  3. 3.Departamento de Física TeóricaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations