Footprints of supersymmetry on Higgs decay

Open Access
Regular Article - Theoretical Physics

Abstract

Motivated by future collider proposals that aim to measure the Higgs properties precisely, we study the partial decay widths of the lightest Higgs boson in the minimal supersymmetric standard model with an emphasis on the parameter region where all superparticles and heavy Higgs bosons are not accessible at the LHC. Taking account of phenomenological constraints such as the Higgs mass, flavor constraints, vacuum stability, and perturbativity of coupling constants up to the grand unification scale, we discuss how large the deviations of the partial decay widths from the standard model predictions can be. These constraints exclude large fraction of the parameter region where the Higgs widths show significant deviation from the standard model predictions. Nevertheless, even if superparticles and the heavy Higgses are out of the reach of 14TeV LHC, the deviation may be large enough to be observed at future e+e collider experiments.

Keywords

Higgs Physics Supersymmetric Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    S. Dawson et al., Working Group Report: Higgs Boson, arXiv:1310.8361 [INSPIRE].
  4. [4]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric standard model, Phys. Lett. B 262 (1991) 54 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001.Google Scholar
  11. [11]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    S. Heinemeyer, W. Hollik and G. Weiglein, The Masses of the neutral CP - even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].ADSMATHGoogle Scholar
  13. [13]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Frank et al., The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-Precision Predictions for the Light CP -Even Higgs Boson Mass of the Minimal Supersymmetric Standard Model, Phys. Rev. Lett. 112 (2014) 141801 [arXiv:1312.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L.J. Hall, R. Rattazzi and U. Sarid, The Top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].ADSGoogle Scholar
  17. [17]
    R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Carena, S. Mrenna and C.E.M. Wagner, MSSM Higgs boson phenomenology at the Tevatron collider, Phys. Rev. D 60 (1999) 075010 [hep-ph/9808312] [INSPIRE].ADSGoogle Scholar
  20. [20]
    H. Eberl, K. Hidaka, S. Kraml, W. Majerotto and Y. Yamada, Improved SUSY QCD corrections to Higgs boson decays into quarks and squarks, Phys. Rev. D 62 (2000) 055006 [hep-ph/9912463] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the \( \overline{t}b{H}^{+} \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    L. Hofer, U. Nierste and D. Scherer, Resummation of tan-beta-enhanced supersymmetric loop corrections beyond the decoupling limit, JHEP 10 (2009) 081 [arXiv:0907.5408] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D. Noth and M. Spira, Higgs Boson Couplings to Bottom Quarks: Two-Loop Supersymmetry-QCD Corrections, Phys. Rev. Lett. 101 (2008) 181801 [arXiv:0808.0087] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Carena, H.E. Haber, H.E. Logan and S. Mrenna, Distinguishing a MSSM Higgs boson from the SM Higgs boson at a linear collider, Phys. Rev. D 65 (2002) 055005 [Erratum ibid. D 65 (2002) 099902] [hep-ph/0106116] [INSPIRE].
  25. [25]
    A. Arvanitaki and G. Villadoro, A Non Standard Model Higgs at the LHC as a Sign of Naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Reece, Vacuum Instabilities with a Wrong-Sign Higgs-Gluon-Gluon Amplitude, New J. Phys. 15 (2013) 043003 [arXiv:1208.1765] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    E. Bagnaschi et al., Towards precise predictions for Higgs-boson production in the MSSM, JHEP 06 (2014) 167 [arXiv:1404.0327] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Heinemeyer, W. Hollik and G. Weiglein, Decay widths of the neutral CP even MSSM Higgs bosons in the Feynman diagrammatic approach, Eur. Phys. J. C 16 (2000) 139 [hep-ph/0003022] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    M. Cahill-Rowley, J. Hewett, A. Ismail and T. Rizzo, Higgs boson coupling measurements and direct searches as complementary probes of the phenomenological MSSM, Phys. Rev. D 90 (2014) 095017 [arXiv:1407.7021] [INSPIRE].ADSGoogle Scholar
  30. [30]
    K.S. Babu and C.F. Kolda, Higgs mediated B 0μ + μ in minimal supersymmetry, Phys. Rev. Lett. 84 (2000) 228 [hep-ph/9909476] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S.R. Choudhury and N. Gaur, Dileptonic decay of B(s) meson in SUSY models with large tan Beta, Phys. Lett. B 451 (1999) 86 [hep-ph/9810307] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. Buchalla and A.J. Buras, QCD corrections to rare K and B decays for arbitrary top quark mass, Nucl. Phys. B 400 (1993) 225 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Misiak and J. Urban, QCD corrections to FCNC decays mediated by Z penguins and W boxes, Phys. Lett. B 451 (1999) 161 [hep-ph/9901278] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C. Bobeth, T. Ewerth, F. Krüger and J. Urban, Analysis of neutral Higgs boson contributions to the decays \( \overline{B}(s)\to {\ell}^{+}{\ell}^{-} \) and \( \overline{B}\to K{\ell}^{+}{\ell}^{-} \), Phys. Rev. D 64 (2001) 074014 [hep-ph/0104284] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C. Bobeth, A.J. Buras, F. Krüger and J. Urban, QCD corrections to \( \overline{B}\to {X}_{d,s}\nu \overline{\nu} \) , \( {\overline{B}}_{d,s}\to {\ell}^{+}{\ell}^{-} \) , \( K\to \pi \nu \overline{\nu} \) and K Lμ + μ in the MSSM, Nucl. Phys. B 630 (2002) 87 [hep-ph/0112305] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    C. Bobeth et al., B s,d → ℓ+ in the Standard Model with Reduced Theoretical Uncertainty, Phys. Rev. Lett. 112 (2014) 101801 [arXiv:1311.0903] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    CMS and LHCb collaborations, Observation of the rare B s0 → μ + μ decay from the combined analysis of CMS and LHCb data, arXiv:1411.4413 [INSPIRE].
  38. [38]
    Heavy Flavor Averaging Group (HFAG) collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].
  39. [39]
    M. Misiak et al., Estimate of \( B\left(\overline{B}\to {X}_s\gamma \right) \) at O(α s2), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    F. Mahmoudi, SuperIso v2.3: A Program for calculating flavor physics observables in Supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    W. Altmannshofer, M. Carena, N.R. Shah and F. Yu, Indirect Probes of the MSSM after the Higgs Discovery, JHEP 01 (2013) 160 [arXiv:1211.1976] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J.M. Frere, D.R.T. Jones and S. Raby, Fermion Masses and Induction of the Weak Scale by Supergravity, Nucl. Phys. B 222 (1983) 11 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J.F. Gunion, H.E. Haber and M. Sher, Charge/Color Breaking Minima and a-Parameter Bounds in Supersymmetric Models, Nucl. Phys. B 306 (1988) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J.A. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the MSSM from charge and color breaking minima, Nucl. Phys. B 471 (1996) 3 [hep-ph/9507294] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Kusenko, P. Langacker and G. Segre, Phase transitions and vacuum tunneling into charge and color breaking minima in the MSSM, Phys. Rev. D 54 (1996) 5824 [hep-ph/9602414] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Stability of the CMSSM against sfermion VEVs, JHEP 12 (2013) 103 [arXiv:1309.7212] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    D. Chowdhury, R.M. Godbole, K.A. Mohan and S.K. Vempati, Charge and Color Breaking Constraints in MSSM after the Higgs Discovery at LHC, JHEP 02 (2014) 110 [arXiv:1310.1932] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    N. Blinov and D.E. Morrissey, Vacuum Stability and the MSSM Higgs Mass, JHEP 03 (2014) 106 [arXiv:1310.4174] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J.E. Camargo-Molina, B. Garbrecht, B. O’Leary, W. Porod and F. Staub, Constraining the Natural MSSM through tunneling to color-breaking vacua at zero and non-zero temperature, Phys. Lett. B 737 (2014) 156 [arXiv:1405.7376] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S.R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].
  51. [51]
    C.G. Callan Jr. and S.R. Coleman, The Fate of the False Vacuum. 2. First Quantum Corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].ADSGoogle Scholar
  52. [52]
    C.L. Wainwright, CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    K.E. Williams, H. Rzehak and G. Weiglein, Higher order corrections to Higgs boson decays in the MSSM with complex parameters, Eur. Phys. J. C 71 (2011) 1669 [arXiv:1103.1335] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M.E. Peskin, Estimation of LHC and ILC Capabilities for Precision Higgs Boson Coupling Measurements, arXiv:1312.4974 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Motoi Endo
    • 1
    • 2
  • Takeo Moroi
    • 1
    • 2
  • Mihoko M. Nojiri
    • 2
    • 3
    • 4
  1. 1.Department of PhysicsUniversity of TokyoTokyoJapan
  2. 2.Kavli IPMU (WPI)University of TokyoKashiwaJapan
  3. 3.KEK Theory Center, IPNS, KEKTsukubaJapan
  4. 4.The Graduate University of Advanced Studies (Sokendai)TsukubaJapan

Personalised recommendations