Advertisement

Isospin violating dark matter in Stückelberg portal scenarios

  • Víctor Martín Lozano
  • Miguel Peiró
  • Pablo Soler
Open Access
Regular Article - Theoretical Physics

Abstract

Hidden sector scenarios in which dark matter (DM) interacts with the Standard Model matter fields through the exchange of massive Z bosons are well motivated by certain string theory constructions. In this work, we thoroughly study the phenomenological aspects of such scenarios and find that they present a clear and testable consequence for direct DM searches. We show that such string motivated Stückelberg portals naturally lead to isospin violating interactions of DM particles with nuclei. We find that the relations between the DM coupling to neutrons and protons for both, spin-independent (f n /f p ) and spin-dependent (a n /a p ) interactions, are very flexible depending on the charges of the quarks under the extra U(1) gauge groups. We show that within this construction these ratios are generically different from ±1 (i.e. different couplings to protons and neutrons) leading to a potentially measurable distinction from other popular portals. Finally, we incorporate bounds from searches for dijet and dilepton resonances at the LHC as well as LUX bounds on the elastic scattering of DM off nucleons to determine the experimentally allowed values of f n /f p and a n /a p .

Keywords

Cosmology of Theories beyond the SM D-branes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188.
  2. [2]
    D. Feldman, Z. Liu and P. Nath, The Stueckelberg Z-prime Extension with Kinetic Mixing and Milli-Charged Dark Matter From the Hidden Sector, Phys. Rev. D 75 (2007) 115001 [hep-ph/0702123] [INSPIRE].ADSGoogle Scholar
  3. [3]
    A. Falkowski, J. Juknevich and J. Shelton, Dark Matter Through the Neutrino Portal, arXiv:0908.1790.
  4. [4]
    B. Batell, M. Pospelov and A. Ritz, Exploring Portals to a Hidden Sector Through Fixed Targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].ADSGoogle Scholar
  5. [5]
    P. Crivelli, A. Belov, U. Gendotti, S. Gninenko and A. Rubbia, Positronium Portal into Hidden Sector: A new Experiment to Search for Mirror Dark Matter, 2010 JINST 5 P08001 [arXiv:1005.4802] [INSPIRE].
  6. [6]
    X. Chu, T. Hambye and M.H.G. Tytgat, The Four Basic Ways of Creating Dark Matter Through a Portal, JCAP 05 (2012) 034 [arXiv:1112.0493] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Essig et al., Working Group Report: New Light Weakly Coupled Particles,Google Scholar
  8. [8]
    W.-Z. Feng, G. Shiu, P. Soler and F. Ye, Building a Stückelberg portal, JHEP 05 (2014) 065 [arXiv:1401.5890] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    W.-Z. Feng, G. Shiu, P. Soler and F. Ye, Probing Hidden Sectors with Stückelberg U(1) Gauge Fields, Phys. Rev. Lett. 113 (2014) 061802 [arXiv:1401.5880] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Foot and S. Vagnozzi, Dissipative hidden sector dark matter, Phys. Rev. D 91 (2015) 023512 [arXiv:1409.7174] [INSPIRE].ADSzbMATHGoogle Scholar
  11. [11]
    Y. Bai and J. Berger, Lepton Portal Dark Matter, JHEP 08 (2014) 153 [arXiv:1402.6696] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Baek, P. Ko and W.-I. Park, Hidden sector monopole, vector dark matter and dark radiation with Higgs portal, JCAP 10 (2014) 067 [arXiv:1311.1035] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    K. Blum, M. Cliche, C. Csaki and S.J. Lee, WIMP Dark Matter through the Dilaton Portal, arXiv:1410.1873.
  14. [14]
    J.F. Cherry, A. Friedland and I.M. Shoemaker, Neutrino Portal Dark Matter: From Dwarf Galaxies to IceCube, arXiv:1411.1071.
  15. [15]
    G. Arcadi, Y. Mambrini and F. Richard, Z-portal dark matter, arXiv:1411.2985.
  16. [16]
    L. Bian, T. Li, J. Shu and X.-C. Wang, Two component dark matter with multi-Higgs portals, arXiv:1412.5443.
  17. [17]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon, Direct Detection of Higgs-Portal Dark Matter at the LHC, Eur. Phys. J. C 73 (2013) 2455 [arXiv:1205.3169] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    P. Langacker, The Physics of Heavy Z Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, (In)visible Z-prime and dark matter, JHEP 08 (2009) 014 [arXiv:0904.1745] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Cassel, D.M. Ghilencea and G.G. Ross, Electroweak and Dark Matter Constraints on a Z-prime in Models with a Hidden Valley, Nucl. Phys. B 827 (2010) 256 [arXiv:0903.1118] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    M.T. Frandsen, F. Kahlhoefer, S. Sarkar and K. Schmidt-Hoberg, Direct detection of dark matter in models with a light Z’, JHEP 09 (2011) 128 [arXiv:1107.2118] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    V. Barger, D. Marfatia and A. Peterson, LHC and dark matter signals of Zbosons, Phys. Rev. D 87 (2013) 015026 [arXiv:1206.6649] [INSPIRE].ADSGoogle Scholar
  24. [24]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Z and dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Alves, S. Profumo and F.S. Queiroz, The dark Z portal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark Matter Complementarity and the Z Portal, arXiv:1501.03490.
  27. [27]
    H. An, P.S.B. Dev, Y. Cai and R.N. Mohapatra, Sneutrino Dark Matter in Gauged Inverse Seesaw Models for Neutrinos, Phys. Rev. Lett. 108 (2012) 081806 [arXiv:1110.1366] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    X. Gao, Z. Kang and T. Li, Origins of the Isospin Violation of Dark Matter Interactions, JCAP 01 (2013) 021 [arXiv:1107.3529] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Bélanger, A. Goudelis, J.-C. Park and A. Pukhov, Isospin-violating dark matter from a double portal, JCAP 02 (2014) 020 [arXiv:1311.0022] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  30. [30]
    K. Hamaguchi, S.P. Liew, T. Moroi and Y. Yamamoto, Isospin-Violating Dark Matter with Colored Mediators, JHEP 05 (2014) 086 [arXiv:1403.0324] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    N. Okada and O. Seto, Isospin violating dark matter being asymmetric, Phys. Rev. D 88 (2013) 063506 [arXiv:1304.6791] [INSPIRE].ADSGoogle Scholar
  32. [32]
    L. E. Ibáñez and A.M. Uranga, String theory and particle physics: An introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012).zbMATHGoogle Scholar
  33. [33]
    R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    F. Marchesano, Progress in D-brane model building, Fortsch. Phys. 55 (2007) 491 [hep-th/0702094] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    Z. Kakushadze, G. Shiu, S.H.H. Tye and Y. Vtorov-Karevsky, A Review of three family grand unified string models, Int. J. Mod. Phys. A 13 (1998) 2551 [hep-th/9710149] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    G. Cleaver et al., Physics implications of flat directions in free fermionic superstring models 1. Mass spectrum and couplings, Phys. Rev. D 59 (1999) 055005 [hep-ph/9807479] [INSPIRE].ADSGoogle Scholar
  38. [38]
    B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    D. Lüst and S. Stieberger, Gauge threshold corrections in intersecting brane world models, Fortsch. Phys. 55 (2007) 427 [hep-th/0302221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    S.A. Abel and B.W. Schofield, Brane anti-brane kinetic mixing, millicharged particles and SUSY breaking, Nucl. Phys. B 685 (2004) 150 [hep-th/0311051] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    S.A. Abel, J. Jaeckel, V.V. Khoze and A. Ringwald, Illuminating the Hidden Sector of String Theory by Shining Light through a Magnetic Field, Phys. Lett. B 666 (2008) 66 [hep-ph/0608248] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S.A. Abel, M.D. Goodsell, J. Jaeckel, V.V. Khoze and A. Ringwald, Kinetic Mixing of the Photon with Hidden U(1)s in String Phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally Light Hidden Photons in LARGE Volume String Compactifications, JHEP 11 (2009) 027 [arXiv:0909.0515] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Cicoli, M. Goodsell, J. Jaeckel and A. Ringwald, Testing String Vacua in the Lab: From a Hidden CMB to Dark Forces in Flux Compactifications, JHEP 07 (2011) 114 [arXiv:1103.3705] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    F. Gmeiner and G. Honecker, Complete Gauge Threshold Corrections for Intersecting Fractional D6-branes: The Z6 and Z6Standard Models, Nucl. Phys. B 829 (2010) 225 [arXiv:0910.0843] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    G. Honecker, Kähler metrics and gauge kinetic functions for intersecting D6-branes on toroidal orbifoldsThe complete perturbative story, Fortsch. Phys. 60 (2012) 243 [arXiv:1109.3192] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    B. Kors and P. Nath, A Stueckelberg extension of the standard model, Phys. Lett. B 586 (2004) 366 [hep-ph/0402047].ADSCrossRefGoogle Scholar
  48. [48]
    R. Dermisek, H. Verlinde and L.-T. Wang, Hypercharged Anomaly Mediation, Phys. Rev. Lett. 100 (2008) 131804 [arXiv:0711.3211] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    H. Verlinde, L.-T. Wang, M. Wijnholt and I. Yavin, A Higher Form (of) Mediation, JHEP 02 (2008) 082 [arXiv:0711.3214] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    G. Shiu, P. Soler and F. Ye, Millicharged Dark Matter in Quantum Gravity and String Theory, Phys. Rev. Lett. 110 (2013) 241304 [arXiv:1302.5471] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    D.M. Ghilencea, L.E. Ibáñez, N. Irges and F. Quevedo, TeV scale Z-prime bosons from D-branes, JHEP 08 (2002) 016 [hep-ph/0205083] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua: The Seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113 [hep-th/0609191] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    L.E. Ibáñez and A.M. Uranga, Neutrino Majorana Masses from String Theory Instanton Effects, JHEP 03 (2007) 052 [hep-th/0609213] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    B. Florea, S. Kachru, J. McGreevy and N. Saulina, Stringy Instantons and Quiver Gauge Theories, JHEP 05 (2007) 024 [hep-th/0610003] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    L.E. Ibáñez, F. Marchesano and R. Rabadán, Getting just the standard model at intersecting branes, JHEP 11 (2001) 002 [hep-th/0105155] [INSPIRE].MathSciNetGoogle Scholar
  56. [56]
    J.L. Feng, J. Kumar, D. Marfatia and D. Sanford, Isospin-Violating Dark Matter, Phys. Lett. B 703 (2011) 124 [arXiv:1102.4331] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    E.J. Chun, J.-C. Park and S. Scopel, Dark matter and a new gauge boson through kinetic mixing, JHEP 02 (2011) 100 [arXiv:1011.3300] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Extending two-Higgs-doublet models by a singlet scalar fieldthe Case for Dark Matter, JHEP 11 (2014) 105 [arXiv:1408.2106] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    D. Cremades, L.E. Ibáñez and F. Marchesano, Yukawa couplings in intersecting D-brane models, JHEP 07 (2003) 038 [hep-th/0302105] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    D.G. Cerdeño and A.M. Green, Direct detection of WIMPs, arXiv:1002.1912.
  61. [61]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3 : A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    P. Klos, J. Menéndez, D. Gazit and A. Schwenk, Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents, Phys. Rev. D 88 (2013) 083516 [arXiv:1304.7684] [INSPIRE].ADSGoogle Scholar
  63. [63]
    P. Fayet, U-boson production in e + e annihilations, psi and Upsilon decays and Light Dark Matter, Phys. Rev. D 75 (2007) 115017 [hep-ph/0702176] [INSPIRE].ADSGoogle Scholar
  64. [64]
    T. Teubner, K. Hagiwara, R. Liao, A. Martin and D. Nomura, Update of g-2 of the Muon and Delta Alpha, Chin. Phys. C 34 (2010) 728 [arXiv:1001.5401].ADSCrossRefGoogle Scholar
  65. [65]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    S. Yellin, Finding an upper limit in the presence of unknown background, Phys. Rev. D 66 (2002) 032005 [physics/0203002] [INSPIRE].ADSGoogle Scholar
  67. [67]
    XENON100 collaboration, E. Aprile et al., Likelihood Approach to the First Dark Matter Results from XENON100, Phys. Rev. D 84 (2011) 052003 [arXiv:1103.0303] [INSPIRE].Google Scholar
  68. [68]
    LUX collaboration, D.S. Akerib et al., The Large Underground Xenon (LUX) Experiment, Nucl. Instrum. Meth. A 704 (2013) 111 [arXiv:1211.3788] [INSPIRE].Google Scholar
  69. [69]
    D. Cerdeño, M. Fornasa, J.-H. Huh and M. Peiró, Nuclear uncertainties in the spin-dependent structure functions for direct dark matter detection, Phys. Rev. D 87 (2013) 023512 [arXiv:1208.6426].ADSGoogle Scholar
  70. [70]
    ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052005 [arXiv:1405.4123] [INSPIRE].ADSGoogle Scholar
  71. [71]
    CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [INSPIRE].ADSGoogle Scholar
  72. [72]
    ATLAS collaboration, Search for New Physics in the Dijet Mass Distribution using 1 fb −1 of pp Collision Data at \( \sqrt{s} \) = 7 TeV collected by the ATLAS Detector, Phys. Lett. B 708 (2012) 37 [arXiv:1108.6311] [INSPIRE].ADSGoogle Scholar
  73. [73]
    CMS collaboration, Search for Narrow Resonances using the Dijet Mass Spectrum with 19.6 fb −1 of pp Collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-EXO-12-059 (2013).
  74. [74]
    M. Carena, A. Daleo, B.A. Dobrescu and T.M.P. Tait, Z gauge bosons at the Tevatron, Phys. Rev. D 70 (2004) 093009 [hep-ph/0408098] [INSPIRE].ADSGoogle Scholar
  75. [75]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  76. [76]
    E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Zphysics with early LHC data, Phys. Rev. D 83 (2011) 075012 [arXiv:1010.6058] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Víctor Martín Lozano
    • 1
    • 2
  • Miguel Peiró
    • 1
    • 2
  • Pablo Soler
    • 3
  1. 1.Instituto de Física Teórica UAM/CSICUniversidad Autónoma de MadridMadridSpain
  2. 2.Departamento de Física TeóricaUniversidad Autónoma de MadridMadridSpain
  3. 3.Department of PhysicsUniversity of WisconsinMadisonUnited States

Personalised recommendations