Lepton-flavored scalar dark matter with minimal flavor violation

Open Access
Regular Article - Theoretical Physics

Abstract

We explore scalar dark matter that is part of a lepton flavor triplet satisfying symmetry requirements under the hypothesis of minimal flavor violation. Beyond the standard model, the theory contains in addition three right-handed neutrinos that participate in the seesaw mechanism for light neutrino mass generation. The dark-matter candidate couples to standard-model particles via Higgs-portal renormalizable interactions as well as to leptons through dimension-six operators, all of which have minimal flavor violation built-in. We consider restrictions on the new scalars from the Higgs boson measurements, observed relic density, dark-matter direct detection experiments, LEP II measurements on e+e scattering into a photon plus missing energy, and searches for flavor-violating lepton decays. The viable parameter space can be tested further with future data. Also, we investigate the possibility of the new scalars’ couplings accounting for the tentative hint of Higgs flavor-violating decay hμτ recently detected in the CMS experiment. They are allowed by constraints from other Higgs data to produce a rate of this decay roughly compatible with the CMS finding.

Keywords

Cosmology of Theories beyond the SM Discrete and Finite Symmetries Neutrino Physics Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics (RPP), Chin. Phys. C 38 (2014) 090001 [INSPIRE].Google Scholar
  2. [2]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D. Hooper and E.A. Baltz, Strategies for Determining the Nature of Dark Matter, Ann. Rev. Nucl. Part. Sci. 58 (2008) 293 [arXiv:0802.0702] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J.L. Feng, Dark Matter Candidates from Particle Physics and Methods of Detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    R.S. Chivukula and H. Georgi, Composite Technicolor Standard Model, Phys. Lett. B 188 (1987) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A.J. Buras, Minimal flavor violation, Acta Phys. Polon. B 34 (2003) 5615 [hep-ph/0310208] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. Davidson and F. Palorini, Various definitions of Minimal Flavour Violation for Leptons, Phys. Lett. B 642 (2006) 72 [hep-ph/0607329] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A.L. Kagan, G. Perez, T. Volansky and J. Zupan, General Minimal Flavor Violation, Phys. Rev. D 80 (2009) 076002 [arXiv:0903.1794] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A.J. Buras and J. Girrbach, Towards the Identification of New Physics through Quark Flavour Violating Processes, Rept. Prog. Phys. 77 (2014) 086201 [arXiv:1306.3775] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    V. Cirigliano, B. Grinstein, G. Isidori and M.B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    B. Batell, J. Pradler and M. Spannowsky, Dark matter from minimal flavor violation, JHEP 08 (2011) 038 [arXiv:1105.1781] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    B. Batell, T. Lin and L.-T. Wang, Flavored dark matter and R-parity violation, JHEP 01 (2014) 075 [arXiv:1309.4462] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979), pg. 95.Google Scholar
  18. [18]
    T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors And Unified Theories, in Supergravity, P. van Nieuwenhuizen and D. Freedman eds., North-Holland, Amsterdam The Netherlands (1979), pg. 315.Google Scholar
  20. [20]
    P. Ramond, The Family Group in Grand Unified Theories, hep-ph/9809459 [INSPIRE].
  21. [21]
    S.L. Glashow, in Proceedings of the 1979 Cargese Summer Institute on Quarks and Leptons, M. Levy et al. eds., Plenum Press, New York U.S.A. (1980), pg. 687.Google Scholar
  22. [22]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  24. [24]
    J. Schechter and J.W.F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774 [INSPIRE].ADSGoogle Scholar
  25. [25]
    L. Lopez-Honorez and L. Merlo, Dark matter within the minimal flavour violation ansatz, Phys. Lett. B 722 (2013) 135 [arXiv:1303.1087] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].ADSGoogle Scholar
  27. [27]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  28. [28]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    G. Colangelo, E. Nikolidakis and C. Smith, Supersymmetric models with minimal flavour violation and their running, Eur. Phys. J. C 59 (2009) 75 [arXiv:0807.0801] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L. Mercolli and C. Smith, EDM constraints on flavored CP-violating phases, Nucl. Phys. B 817 (2009) 1 [arXiv:0902.1949] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    X.-G. He, C.-J. Lee, S.-F. Li and J. Tandean, Large electron electric dipole moment in minimal flavor violation framework with Majorana neutrinos, Phys. Rev. D 89 (2014) 091901 [arXiv:1401.2615] [INSPIRE].ADSGoogle Scholar
  32. [32]
    X.-G. He, C.-J. Lee, S.-F. Li and J. Tandean, Fermion EDMs with Minimal Flavor Violation, JHEP 08 (2014) 019 [arXiv:1404.4436] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P. Agrawal, S. Blanchet, Z. Chacko and C. Kilic, Flavored Dark Matter and Its Implications for Direct Detection and Colliders, Phys. Rev. D 86 (2012) 055002 [arXiv:1109.3516] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J. Kile, Flavored Dark Matter: A Review, Mod. Phys. Lett. A 28 (2013) 1330031 [arXiv:1308.0584] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Hamze, C. Kilic, J. Koeller, C. Trendafilova and J.-H. Yu, Lepton-Flavored Asymmetric Dark Matter and Interference in Direct Detection, Phys. Rev. D 91 (2015) 035009 [arXiv:1410.3030] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Hirsch, S. Morisi, E. Peinado and J.W.F. Valle, Discrete dark matter, Phys. Rev. D 82 (2010) 116003 [arXiv:1007.0871] [INSPIRE].ADSGoogle Scholar
  37. [37]
    D. Meloni, S. Morisi and E. Peinado, Neutrino phenomenology and stable dark matter with A4, Phys. Lett. B 697 (2011) 339 [arXiv:1011.1371] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M.S. Boucenna, M. Hirsch, S. Morisi, E. Peinado, M. Taoso et al., Phenomenology of Dark Matter from A 4 Flavor Symmetry, JHEP 05 (2011) 037 [arXiv:1101.2874] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  39. [39]
    M.S. Boucenna, S. Morisi, E. Peinado, Y. Shimizu and J.W.F. Valle, Predictive discrete dark matter model and neutrino oscillations, Phys. Rev. D 86 (2012) 073008 [arXiv:1204.4733] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Kanemura, T. Kasai and Y. Okada, Mass bounds of the lightest CP even Higgs boson in the two Higgs doublet model, Phys. Lett. B 471 (1999) 182 [hep-ph/9903289] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G. Cynolter, E. Lendvai and G. Pocsik, Note on unitarity constraints in a model for a singlet scalar dark matter candidate, Acta Phys. Polon. B 36 (2005) 827 [hep-ph/0410102] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J.F. Kamenik and C. Smith, FCNC portals to the dark sector, JHEP 03 (2012) 090 [arXiv:1111.6402] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  43. [43]
    E.W. Kolb and M. Turner, Frontiers in Physics. Vol. 69: The Early Universe, Westview Press, Boulder U.S.A. (1990).Google Scholar
  44. [44]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].ADSGoogle Scholar
  46. [46]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex Singlet Extension of the Standard Model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [INSPIRE].ADSGoogle Scholar
  48. [48]
    J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [arXiv:1306.4710] [INSPIRE].ADSGoogle Scholar
  49. [49]
    X.-G. He, S.-Y. Ho, J. Tandean and H.-C. Tsai, Scalar Dark Matter and Standard Model with Four Generations, Phys. Rev. D 82 (2010) 035016 [arXiv:1004.3464] [INSPIRE].ADSGoogle Scholar
  50. [50]
    X.-G. He, B. Ren and J. Tandean, Hints of Standard Model Higgs Boson at the LHC and Light Dark Matter Searches, Phys. Rev. D 85 (2012) 093019 [arXiv:1112.6364] [INSPIRE].ADSGoogle Scholar
  51. [51]
    ATLAS collaboration, Measurement of the Higgs boson mass from the H → γγ and HZZ →4ℓ channels with the ATLAS detector using 25fb −1 of pp collision data, Phys. Rev. D 90 (2014) 052004 [arXiv:1406.3827] [INSPIRE].ADSGoogle Scholar
  52. [52]
    CMS collaboration, Precise determination of the mass of the Higgs boson and studies of the compatibility of its couplings with the standard model, CMS-PAS-HIG-14-009 (2014).
  53. [53]
  54. [54]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, JHEP 05 (2014) 046 [arXiv:1303.3570] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J. Ellis and T. You, Updated Global Analysis of Higgs Couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].ADSGoogle Scholar
  59. [59]
    K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs precision analysis updates 2014, Phys. Rev. D 90 (2014) 095009 [arXiv:1407.8236] [INSPIRE].ADSGoogle Scholar
  60. [60]
    F. Capozzi et al., Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].ADSGoogle Scholar
  61. [61]
    J. Goodman et al., Constraints on Dark Matter from Colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].ADSGoogle Scholar
  62. [62]
    Fermi-LAT collaboration, M. Ackermann et al., Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107 (2011) 241302 [arXiv:1108.3546] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    A. Geringer-Sameth and S.M. Koushiappas, Exclusion of canonical WIMPs by the joint analysis of Milky Way dwarfs with Fermi, Phys. Rev. Lett. 107 (2011) 241303 [arXiv:1108.2914] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. Geringer-Sameth, S.M. Koushiappas and M.G. Walker, A Comprehensive Search for Dark Matter Annihilation in Dwarf Galaxies, arXiv:1410.2242 [INSPIRE].
  65. [65]
    ALEPH collaboration, D. Buskulic et al., A study of single and multi-photon production in e + e collisions at center-of-mass energies of 130-GeV and 136-GeV, Phys. Lett. B 384 (1996) 333 [INSPIRE].ADSGoogle Scholar
  66. [66]
    ALEPH collaboration, R. Barate et al., Searches for supersymmetry in the photon(s) plus missing energy channels at \( \sqrt{s}=161 \) GeV and 172 GeV, Phys. Lett. B 420 (1998) 127 [hep-ex/9710009] [INSPIRE].ADSGoogle Scholar
  67. [67]
    ALEPH collaboration, R. Barate et al., Single photon and multiphoton production in e + e collisions at a center-of-mass energy of 183 GeV, Phys. Lett. B 429 (1998) 201 [INSPIRE].ADSGoogle Scholar
  68. [68]
    ALEPH collaboration, A. Heister et al., Single photon and multiphoton production in e + e collisions at \( \sqrt{s} \) up to 209 GeV, Eur. Phys. J. C 28 (2003) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    DELPHI collaboration, P. Abreu et al., Photon events with missing energy at \( \sqrt{s}=183 \) GeV to 189 GeV, Eur. Phys. J. C 17 (2000) 53 [hep-ex/0103044] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    DELPHI collaboration, J. Abdallah et al., Photon events with missing energy in e + e collisions at \( \sqrt{s}=130 \) GeV to 209 GeV, Eur. Phys. J. C 38 (2005) 395 [hep-ex/0406019] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    L3 collaboration, M. Acciarri et al., Single and multiphoton events with missing energy in e + e collisions at 161 GeV < \( \sqrt{s} \) < 172 GeV, Phys. Lett. B 415 (1997) 299 [INSPIRE].ADSGoogle Scholar
  72. [72]
    L3 collaboration, M. Acciarri et al., Single and multiphoton events with missing energy in e + e collisions at \( \sqrt{s}=183 \) GeV, Phys. Lett. B 444 (1998) 503 [INSPIRE].ADSGoogle Scholar
  73. [73]
    L3 collaboration, M. Acciarri et al., Single and multiphoton events with missing energy in e + e collisions at \( \sqrt{S} \) -189-GeV, Phys. Lett. B 470 (1999) 268 [hep-ex/9910009] [INSPIRE].ADSGoogle Scholar
  74. [74]
    OPAL collaboration, K. Ackerstaff et al., Search for anomalous production of photonic events with missing energy in e + e collisions at \( \sqrt{s}=130 \) GeV to 172 GeV, Eur. Phys. J. C 2 (1998) 607 [hep-ex/9801024] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    OPAL collaboration, G. Abbiendi et al., Search for anomalous photonic events with missing energy in e + e collisions at \( \sqrt{s}=130 \) GeV, 136 GeV and 183 GeV, Eur. Phys. J. C 8 (1999) 23 [hep-ex/9810021] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    OPAL collaboration, G. Abbiendi et al., Photonic events with missing energy in e + e collisions at \( \sqrt{s}=189 \) GeV, Eur. Phys. J. C 18 (2000) 253 [hep-ex/0005002] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    C.-W. Chiang, G. Faisel, Y.-F. Lin and J. Tandean, Constraining Nonstandard Neutrino-Electron Interactions due to a New Light Spin-1 Boson, JHEP 10 (2013) 150 [arXiv:1204.6296] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    T. Behnke et al., The International Linear Collider Technical Design Report - Volume 1: Executive Summary, arXiv:1306.6327 [INSPIRE].
  79. [79]
    D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].ADSGoogle Scholar
  80. [80]
    CMS collaboration, Search for Lepton Flavour Violating Decays of the Higgs Boson, CMS-PAS-HIG-14-005 (2014).
  81. [81]
    A. Dery, A. Efrati, Y. Nir, Y. Soreq and V. Susič, Model building for flavor changing Higgs couplings, Phys. Rev. D 90 (2014) 115022 [arXiv:1408.1371] [INSPIRE].ADSGoogle Scholar
  82. [82]
    M.D. Campos, A.E.C. Hernández, H. Päs and E. Schumacher, Higgsμτ as an indication for S 4 flavor symmetry, arXiv:1408.1652 [INSPIRE].
  83. [83]
    A. Celis, V. Cirigliano and E. Passemar, Disentangling new physics contributions in lepton flavour violating tau decays, arXiv:1409.4439 [INSPIRE].
  84. [84]
    D. Aristizabal Sierra and A. Vicente, Explaining the CMS Higgs flavor violating decay excess, Phys. Rev. D 90 (2014) 115004 [arXiv:1409.7690] [INSPIRE].ADSGoogle Scholar
  85. [85]
    ATLAS collaboration, Evidence for Higgs boson Yukawa couplings in the Hτ τ decay mode with the ATLAS detector, ATLAS-CONF-2014-061 (2014).
  86. [86]
    ATLAS collaboration, Search for the Standard Model Higgs boson decay to μ + μ with the ATLAS detector, Phys. Lett. B 738 (2014) 68 [arXiv:1406.7663] [INSPIRE].ADSGoogle Scholar
  87. [87]
    CMS collaboration, Search for a standard model-like Higgs boson in the μ + μ and e + e decay channels at the LHC, Phys. Lett. B 744 (2015) 184 [arXiv:1410.6679] [INSPIRE].Google Scholar
  88. [88]
    A. Goudelis, O. Lebedev and J.-h. Park, Higgs-induced lepton flavor violation, Phys. Lett. B 707 (2012) 369 [arXiv:1111.1715] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    G. Blankenburg, J. Ellis and G. Isidori, Flavour-Changing Decays of a 125 GeV Higgs-like Particle, Phys. Lett. B 712 (2012) 386 [arXiv:1202.5704] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    R. Harnik, J. Kopp and J. Zupan, Flavor Violating Higgs Decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    O. Nicrosini and L. Trentadue, Structure Function Approach to the Neutrino Counting Problem, Nucl. Phys. B 318 (1989) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    G. Montagna, O. Nicrosini, F. Piccinini and L. Trentadue, Invisible events with radiative photons at LEP, Nucl. Phys. B 452 (1995) 161 [hep-ph/9506258] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Physics and Center for Theoretical SciencesNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations