Excessive Higgs pair production with little MET from squarks and gluinos in the NMSSM

Open Access
Regular Article - Theoretical Physics

Abstract

In the presence of a light singlino-like LSP in the NMSSM, the missing transverse energy — MET — signature of squark/gluino production can be considerably reduced. Instead, a pair of Higgs bosons is produced in each event. We propose benchmark points for such scenarios, which differ in the squark and gluino masses, and in their decay cascades. Events for these points are simulated for the run II of the LHC at 13 TeV centre of mass energy. After cuts on the transverse momenta of at least four jets, and requiring two τ-leptons from one Higgs decay, we find that the invariant mass of two b-jets from the other Higgs decay shows clear peaks above the background. Despite the reduced MET, this search strategy allows to see signals for sufficiently large integrated luminosities, depending on the squark/gluino masses.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS experiment, JHEP 10 (2013) 130 [arXiv:1308.1841] [INSPIRE].
  2. [2]
  3. [3]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2014) 055 [arXiv:1402.4770] [INSPIRE].
  4. [4]
    J.L. Feng, Naturalness and the Status of Supersymmetry, Ann. Rev. Nucl. Part. Sci. 63 (2013) 351 [arXiv:1302.6587] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Craig, The State of Supersymmetry after Run I of the LHC, arXiv:1309.0528 [INSPIRE].
  6. [6]
    I. Melzer-Pellmann and P. Pralavorio, Lessons for SUSY from the LHC after the first run, Eur. Phys. J. C 74 (2014) 2801 [arXiv:1404.7191] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    E. Halkiadakis, G. Redlinger and D. Shih, Status and Implications of Beyond-the-Standard-Model Searches at the LHC, Ann. Rev. Nucl. Part. Sci. 64 (2014) 319 [arXiv:1411.1427] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].
  9. [9]
    J. Fan, M. Reece and J.T. Ruderman, Stealth Supersymmetry, JHEP 11 (2011) 012 [arXiv:1105.5135] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Lisanti, P. Schuster, M. Strassler and N. Toro, Study of LHC Searches for a Lepton and Many Jets, JHEP 11 (2012) 081 [arXiv:1107.5055] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Fan, M. Reece and J.T. Ruderman, A Stealth Supersymmetry Sampler, JHEP 07 (2012) 196 [arXiv:1201.4875] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Baryakhtar, N. Craig and K. Van Tilburg, Supersymmetry in the Shadow of Photini, JHEP 07 (2012) 164 [arXiv:1206.0751] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.A. Evans, Y. Kats, D. Shih and M.J. Strassler, Toward Full LHC Coverage of Natural Supersymmetry, JHEP 07 (2014) 101 [arXiv:1310.5758] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    U. Ellwanger and A.M. Teixeira, NMSSM with a singlino LSP: possible challenges for searches for supersymmetry at the LHC, JHEP 10 (2014) 113 [arXiv:1406.7221] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    J.E. Kim and H.P. Nilles, The mu Problem and the Strong CP Problem, Phys. Lett. B 138 (1984) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    A. Arvanitaki and G. Villadoro, A Non Standard Model Higgs at the LHC as a Sign of Naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.F. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs Benchmarks Near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    Z. Kang, J. Li and T. Li, On Naturalness of the MSSM and NMSSM, JHEP 11 (2012) 024 [arXiv:1201.5305] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    ATLAS collaboration, Search for massive particles in multijet signatures with the ATLAS detector in \( \sqrt{s}=8 \) TeV pp collisions at the LHC, ATLAS-CONF-2013-091 (2013).
  24. [24]
    CMS Collaboration, Search for light- and heavy-flavor three-jet resonances in multijet final states at 8 TeV, CMS-PAS-EXO-12-049 (Search for light- and heavy-flavor three-jet resonances in multijet final states at 8 TeV).
  25. [25]
    CMS collaboration, Search for pair-produced dijet resonances in four-jet final states in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 110 (2013) 141802 [arXiv:1302.0531] [INSPIRE].
  26. [26]
    CMS collaboration, Search for microscopic black holes in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 07 (2013) 178 [arXiv:1303.5338] [INSPIRE].
  27. [27]
    S. Dimopoulos, M. Dine, S. Raby and S.D. Thomas, Experimental signatures of low-energy gauge mediated supersymmetry breaking, Phys. Rev. Lett. 76 (1996) 3494 [hep-ph/9601367] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Ambrosanio, G.L. Kane, G.D. Kribs, S.P. Martin and S. Mrenna, Search for supersymmetry with a light gravitino at the Fermilab Tevatron and CERN LEP colliders, Phys. Rev. D 54 (1996) 5395 [hep-ph/9605398] [INSPIRE].ADSGoogle Scholar
  29. [29]
    I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [INSPIRE].ADSGoogle Scholar
  30. [30]
    K.T. Matchev and S.D. Thomas, Higgs and Z boson signatures of supersymmetry, Phys. Rev. D 62 (2000) 077702 [hep-ph/9908482] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Datta, A. Djouadi, M. Guchait and F. Moortgat, Detection of MSSM Higgs bosons from supersymmetric particle cascade decays at the LHC, Nucl. Phys. B 681 (2004) 31 [hep-ph/0303095] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    P. Bandyopadhyay, A. Datta and B. Mukhopadhyaya, Signatures of gaugino mass non-universality in cascade Higgs production at the LHC, Phys. Lett. B 670 (2008) 5 [arXiv:0806.2367] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K. Huitu et al., Search for Higgs Bosons in SUSY Cascades in CMS and Dark Matter with Non-universal Gaugino Masses, Eur. Phys. J. C 58 (2008) 591 [arXiv:0808.3094] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    P. Bandyopadhyay, Probing non-universal gaugino masses via Higgs boson production under SUSY cascades at the LHC: A Detailed study, JHEP 07 (2009) 102 [arXiv:0811.2537] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A.C. Fowler and G. Weiglein, Precise Predictions for Higgs Production in Neutralino Decays in the Complex MSSM, JHEP 01 (2010) 108 [arXiv:0909.5165] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  36. [36]
    P. Meade, M. Reece and D. Shih, Prompt Decays of General Neutralino NLSPs at the Tevatron, JHEP 05 (2010) 105 [arXiv:0911.4130] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Asano, H.D. Kim, R. Kitano and Y. Shimizu, Natural Supersymmetry at the LHC, JHEP 12 (2010) 019 [arXiv:1010.0692] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. Thaler and Z. Thomas, Goldstini Can Give the Higgs a Boost, JHEP 07 (2011) 060 [arXiv:1103.1631] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  39. [39]
    S. Gori, P. Schwaller and C.E.M. Wagner, Search for Higgs Bosons in SUSY Cascade Decays and Neutralino Dark Matter, Phys. Rev. D 83 (2011) 115022 [arXiv:1103.4138] [INSPIRE].ADSGoogle Scholar
  40. [40]
    J.T. Ruderman and D. Shih, General Neutralino NLSPs at the Early LHC, JHEP 08 (2012) 159 [arXiv:1103.6083] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Y. Kats, P. Meade, M. Reece and D. Shih, The Status of GMSB After 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    H. Baer, V. Barger, A. Lessa, W. Sreethawong and X. Tata, Wh plus missing-E T signature from gaugino pair production at the LHC, Phys. Rev. D 85 (2012) 055022 [arXiv:1201.2949] [INSPIRE].ADSGoogle Scholar
  43. [43]
    D. Ghosh, M. Guchait and D. Sengupta, Higgs Signal in Chargino-Neutralino Production at the LHC, Eur. Phys. J. C 72 (2012) 2141 [arXiv:1202.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Belyaev, J.P. Hall, S.F. King and P. Svantesson, Novel gluino cascade decays in E 6 inspired models, Phys. Rev. D 86 (2012) 031702 [arXiv:1203.2495] [INSPIRE].ADSGoogle Scholar
  45. [45]
    P. Byakti and D. Ghosh, Magic Messengers in Gauge Mediation and signal for 125 GeV boosted Higgs boson, Phys. Rev. D 86 (2012) 095027 [arXiv:1204.0415] [INSPIRE].ADSGoogle Scholar
  46. [46]
    K. Howe and P. Saraswat, Excess Higgs Production in Neutralino Decays, JHEP 10 (2012) 065 [arXiv:1208.1542] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Belyaev, J.P. Hall, S.F. King and P. Svantesson, Discovering E 6 supersymmetric models in gluino cascade decays at the LHC, Phys. Rev. D 87 (2013) 035019 [arXiv:1211.1962] [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Arbey, M. Battaglia and F. Mahmoudi, Higgs Production in Neutralino Decays in the MSSM - The LHC and a Future e + e Collider, Eur. Phys. J. C 75 (2015) 108 [arXiv:1212.6865] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Bharucha, S. Heinemeyer and F. von der Pahlen, Direct Chargino-Neutralino Production at the LHC: Interpreting the Exclusion Limits in the Complex MSSM, Eur. Phys. J. C 73 (2013) 2629 [arXiv:1307.4237] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    T. Han, S. Padhi and S. Su, Electroweakinos in the Light of the Higgs Boson, Phys. Rev. D 88 (2013) 115010 [arXiv:1309.5966] [INSPIRE].ADSGoogle Scholar
  51. [51]
    F. Yu, Anatomizing Exotic Production of the Higgs Boson, Phys. Rev. D 90 (2014) 015009 [arXiv:1404.2924] [INSPIRE].ADSGoogle Scholar
  52. [52]
    F. Franke and H. Fraas, Production and decay of neutralinos in the next-to-minimal supersymmetric standard model, Z. Phys. C 72 (1996) 309 [hep-ph/9511275] [INSPIRE].ADSGoogle Scholar
  53. [53]
    U. Ellwanger and C. Hugonie, Neutralino cascades in the (M+1)SSM, Eur. Phys. J. C 5 (1998) 723 [hep-ph/9712300] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S.Y. Choi, D.J. Miller and P.M. Zerwas, The Neutralino sector of the next-to-minimal supersymmetric standard model, Nucl. Phys. B 711 (2005) 83 [hep-ph/0407209] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  55. [55]
    K. Cheung and T.-J. Hou, Light Pseudoscalar Higgs boson in Neutralino Decays in the Next-to-Minimal Supersymmetric Standard Model, Phys. Lett. B 674 (2009) 54 [arXiv:0809.1122] [INSPIRE].ADSGoogle Scholar
  56. [56]
    O. Stal and G. Weiglein, Light NMSSM Higgs bosons in SUSY cascade decays at the LHC, JHEP 01 (2012) 071 [arXiv:1108.0595] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    D. Das, U. Ellwanger and A.M. Teixeira, Modified Signals for Supersymmetry in the NMSSM with a Singlino-like LSP, JHEP 04 (2012) 067 [arXiv:1202.5244] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    D.G. Cerdeño, P. Ghosh, C.B. Park and M. Peiró, Collider signatures of a light NMSSM pseudoscalar in neutralino decays in the light of LHC results, JHEP 02 (2014) 048 [arXiv:1307.7601] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs Boson in New Physics Events using Jet Substructure, Phys. Rev. D 81 (2010) 111501 [arXiv:0912.4731] [INSPIRE].ADSGoogle Scholar
  60. [60]
    G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering Higgs Bosons of the MSSM using Jet Substructure, Phys. Rev. D 82 (2010) 095012 [arXiv:1006.1656] [INSPIRE].ADSGoogle Scholar
  61. [61]
    B. Bhattacherjee, A. Chakraborty, D. Kumar Ghosh and S. Raychaudhuri, Using Jet Substructure at the LHC to Search for the Light Higgs Bosons of the CP-Violating MSSM, Phys. Rev. D 86 (2012) 075012 [arXiv:1204.3369] [INSPIRE].ADSGoogle Scholar
  62. [62]
    U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: A Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: An Updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  64. [64]
    M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: Confronting your Favourite New Physics Model with LHC Data, Comput. Phys. Commun. 187 (2014) 227 [arXiv:1312.2591] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: A Program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].
  67. [67]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  68. [68]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  69. [69]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].ADSGoogle Scholar
  70. [70]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  72. [72]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    E. Conte and B. Fuks, MadAnalysis 5: status and new developments, J. Phys. Conf. Ser. 523 (2014) 012032 [arXiv:1309.7831] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.LPT, UMR 8627, CNRS, Université de Paris-SudOrsayFrance
  2. 2.School of Physics and AstronomyUniversity of SouthamptonSouthamptonUnited Kingdom
  3. 3.Laboratoire de Physique Corpusculaire, CNRS/IN2P3 - UMR 6533AubièreFrance

Personalised recommendations