Advertisement

Constraints and consequences of reducing small scale structure via large dark matter-neutrino interactions

  • Bridget Bertoni
  • Seyda Ipek
  • David McKeen
  • Ann E. Nelson
Open Access
Regular Article - Theoretical Physics

Abstract

Cold dark matter explains a wide range of data on cosmological scales. However, there has been a steady accumulation of evidence for discrepancies between simulations and observations at scales smaller than galaxy clusters. One promising way to affect structure formation on small scales is a relatively strong coupling of dark matter to neutrinos. We construct an experimentally viable, simple, renormalizable model with new interactions between neutrinos and dark matter and provide the first discussion of how these new dark matter-neutrino interactions affect neutrino phenomenology. We show that addressing the small scale structure problems requires asymmetric dark matter with a mass that is tens of MeV. Generating a sufficiently large dark matter-neutrino coupling requires a new heavy neutrino with a mass around 100 MeV. The heavy neutrino is mostly sterile but has a substantial τ neutrino component, while the three nearly massless neutrinos are partly sterile. This model can be tested by future astrophysical, particle physics, and neutrino oscillation data. Promising signatures of this model include alterations to the neutrino energy spectrum and flavor content observed from a future nearby supernova, anomalous matter effects in neutrino oscillations, and a component of the τ neutrino with mass around 100 MeV.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    B. Moore et al., Dark matter substructure within galactic halos, Astrophys. J. 524 (1999) L19 [astro-ph/9907411] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G. Kauffmann, S.D.M. White and B. Guiderdoni, The Formation and Evolution of Galaxies Within Merging Dark Matter Haloes, Mon. Not. Roy. Astron. Soc. 264 (1993) 201 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    B. Moore, Evidence against dissipationless dark matter from observations of galaxy haloes, Nature 370 (1994) 629 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R.A. Flores and J.R. Primack, Observational and theoretical constraints on singular dark matter halos, Astrophys. J. 427 (1994) L1 [astro-ph/9402004] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A.A. Klypin, A.V. Kravtsov, O. Valenzuela and F. Prada, Where are the missing Galactic satellites?, Astrophys. J. 522 (1999) 82 [astro-ph/9901240] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Boylan-Kolchin, J.S. Bullock and M. Kaplinghat, Too big to fail? The puzzling darkness of massive Milky Way subhaloes, Mon. Not. Roy. Astron. Soc. 415 (2011) L40 [arXiv:1103.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M.G. Walker, Dark Matter in the Milky Ways Dwarf Spheroidal Satellites, arXiv:1205.0311 [INSPIRE].
  8. [8]
    D.H. Weinberg, J.S. Bullock, F. Governato, R.K. de Naray and A.H.G. Peter, Cold dark matter: controversies on small scales, arXiv:1306.0913 [INSPIRE].
  9. [9]
    A. Brooks, Re-Examining Astrophysical Constraints on the Dark Matter Model, Annalen Phys. 526 (2014) 294 [arXiv:1407.7544] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    J.S. Bullock, Notes on the Missing Satellites Problem, arXiv:1009.4505 [INSPIRE].
  11. [11]
    A.S. Font et al., The population of Milky Way satellites in the LambdaCDM cosmology, Mon. Not. Roy. Astron. Soc. 417 (2011) 1260 [arXiv:1103.0024] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Colombi, S. Dodelson and L.M. Widrow, Large scale structure tests of warm dark matter, Astrophys. J. 458 (1996) 1 [astro-ph/9505029] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Tulin, H.-B. Yu and K.M. Zurek, Resonant Dark Forces and Small Scale Structure, Phys. Rev. Lett. 110 (2013) 111301 [arXiv:1210.0900] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Tulin, H.-B. Yu and K.M. Zurek, Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure, Phys. Rev. D 87 (2013) 115007 [arXiv:1302.3898] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Kaplinghat, S. Tulin and H.-B. Yu, Self-interacting Dark Matter Benchmarks, arXiv:1308.0618 [INSPIRE].
  18. [18]
    L.G. van den Aarssen, T. Bringmann and C. Pfrommer, Is dark matter with long-range interactions a solution to all small-scale problems of ΛCDM cosmology?, Phys. Rev. Lett. 109 (2012) 231301 [arXiv:1205.5809] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    I.M. Shoemaker, Constraints on Dark Matter Protohalos in Effective Theories and Neutrinophilic Dark Matter, Phys. Dark Univ. 2 (2013) 157 [arXiv:1305.1936] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    T. Bringmann, J. Hasenkamp and J. Kersten, Tight bonds between sterile neutrinos and dark matter, JCAP 07 (2014) 042 [arXiv:1312.4947] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    P. Ko and Y. Tang, νΛMDM: A Model for Sterile Neutrino and Dark Matter Reconciles Cosmological and Neutrino Oscillation Data after BICEP2, Phys. Lett. B 739 (2014) 62 [arXiv:1404.0236] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    M. Archidiacono, S. Hannestad, R.S. Hansen and T. Tram, Cosmology with self-interacting sterile neutrinos and dark matter - A pseudoscalar model, Phys. Rev. D 91 (2015) 065021 [arXiv:1404.5915] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J.F. Cherry, A. Friedland and I.M. Shoemaker, Neutrino Portal Dark Matter: From Dwarf Galaxies to IceCube, arXiv:1411.1071 [INSPIRE].
  24. [24]
    A.M. Green, S. Hofmann and D.J. Schwarz, The First wimpy halos, JCAP 08 (2005) 003 [astro-ph/0503387] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Loeb and M. Zaldarriaga, The Small-scale power spectrum of cold dark matter, Phys. Rev. D 71 (2005) 103520 [astro-ph/0504112] [INSPIRE].ADSGoogle Scholar
  26. [26]
    T. Bringmann, Particle Models and the Small-Scale Structure of Dark Matter, New J. Phys. 11 (2009) 105027 [arXiv:0903.0189] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    L.E. Strigari et al., A common mass scale for satellite galaxies of the Milky Way, Nature 454 (2008) 1096 [arXiv:0808.3772] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Viel, G.D. Becker, J.S. Bolton and M.G. Haehnelt, Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data, Phys. Rev. D 88 (2013) 043502 [arXiv:1306.2314] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S. Vegetti et al., Gravitational detection of a low-mass dark satellite at cosmological distance, Nature 481 (2012) 341 [arXiv:1201.3643] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Vegetti, L.V.E. Koopmans, M.W. Auger, T. Treu and A.S. Bolton, Inference of the Cold Dark Matter substructure mass function at z=0.2 using strong gravitational lenses, Mon. Not. Roy. Astron. Soc. 442 (2014) 2017 [arXiv:1405.3666] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.F. Navarro, C.S. Frenk and S.D.M. White, A Universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S.-H. Oh, W.J.G. de Blok, E. Brinks, F. Walter and J. Kennicutt, Dark and luminous matter in THINGS dwarf galaxies, Astron. J. 141 (2011) 193 [arXiv:1011.0899] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    F. Iocco, G. Mangano, G. Miele, O. Pisanti and P.D. Serpico, Primordial Nucleosynthesis: from precision cosmology to fundamental physics, Phys. Rept. 472 (2009) 1 [arXiv:0809.0631] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    P.D. Serpico and G.G. Raffelt, MeV-mass dark matter and primordial nucleosynthesis, Phys. Rev. D 70 (2004) 043526 [astro-ph/0403417] [INSPIRE].ADSGoogle Scholar
  36. [36]
    R.J. Wilkinson, C. Boehm and J. Lesgourgues, Constraining Dark Matter-Neutrino Interactions using the CMB and Large-Scale Structure, JCAP 05 (2014) 011 [arXiv:1401.7597] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C. Boehm, M.J. Dolan and C. McCabe, A Lower Bound on the Mass of Cold Thermal Dark Matter from Planck, JCAP 08 (2013) 041 [arXiv:1303.6270] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K.M. Nollett and G. Steigman, BBN And The CMB Constrain Neutrino Coupled Light WIMPs, Phys. Rev. D 91 (2015) 083505 [arXiv:1411.6005] [INSPIRE].ADSGoogle Scholar
  39. [39]
    D.I. Britton et al., Improved search for massive neutrinos in π +e + ν decay, Phys. Rev. D 46 (1992) 885 [INSPIRE].ADSGoogle Scholar
  40. [40]
    PIENU collaboration, M. Aoki et al., Search for Massive Neutrinos in the Decay π, Phys. Rev. D 84 (2011) 052002 [arXiv:1106.4055] [INSPIRE].Google Scholar
  41. [41]
    D.I. Britton et al., Measurement of the π +e + ν branching ratio, Phys. Rev. Lett. 68 (1992) 3000 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    G. Czapek et al., Branching ratio for the rare pion decay into positron and neutrino, Phys. Rev. Lett. 70 (1993) 17 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    W.J. Marciano and A. Sirlin, Radiative corrections to π 2 decays, Phys. Rev. Lett. 71 (1993) 3629 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    MuLan collaboration, V. Tishchenko et al., Detailed Report of the MuLan Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant, Phys. Rev. D 87 (2013) 052003 [arXiv:1211.0960] [INSPIRE].Google Scholar
  45. [45]
    R. Abela et al., Search for an Admixture of Heavy Neutrino in Pion Decay, Phys. Lett. B 105 (1981) 263 [Erratum ibid. B 106 (1981) 513] [INSPIRE].
  46. [46]
    R.S. Hayano et al., Heavy neutrino search using K μ2 decay, Phys. Rev. Lett. 49 (1982) 1305 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    E949 collaboration, A.V. Artamonov et al., Search for heavy neutrinos in K +μ + ν H decays, Phys. Rev. D 91 (2015) 052001 [arXiv:1411.3963] [INSPIRE].ADSGoogle Scholar
  48. [48]
    TWIST collaboration, R. Bayes et al., New Experimental Constraints for the Standard Model from Muon Decay, arXiv:1010.4998 [INSPIRE].
  49. [49]
    S.N. Gninenko, A resolution of puzzles from the LSND, KARMEN and MiniBooNE experiments, Phys. Rev. D 83 (2011) 015015 [arXiv:1009.5536] [INSPIRE].ADSGoogle Scholar
  50. [50]
    Particle Data Group collaboration, K. Olive et al., Review of Particle Physics, Chin. Phys. 38 (2014) 090001.CrossRefGoogle Scholar
  51. [51]
    ALEPH collaboration, R. Barate et al., An Upper limit on the tau-neutrino mass from three-prong and five-prong tau decays, Eur. Phys. J. C 2 (1998) 395 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    Belle collaboration, K. Belous et al., Measurement of the τ-lepton lifetime at Belle, Phys. Rev. Lett. 112 (2014) 031801 [arXiv:1310.8503] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Pich, Precision Tau Physics, Prog. Part. Nucl. Phys. 75 (2014) 41 [arXiv:1310.7922] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J.C. Helo, S. Kovalenko and I. Schmidt, On sterile neutrino mixing with ν τ, Phys. Rev. D 84 (2011) 053008 [arXiv:1105.3019] [INSPIRE].ADSGoogle Scholar
  55. [55]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].ADSGoogle Scholar
  57. [57]
    S.P. Mikheev and A.Y. Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].Google Scholar
  58. [58]
    B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].ADSGoogle Scholar
  59. [59]
    Daya Bay collaboration, F.P. An et al., Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay, Phys. Rev. Lett. 112 (2014) 061801 [arXiv:1310.6732] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    K2K, Super-Kamiokande collaboration, R.J. Wilkes, New results from super-K and K2K, eConf C 020805 (2002) TTH02 [hep-ex/0212035] [INSPIRE].
  61. [61]
    MINOS collaboration, P. Adamson et al., Measurement of the neutrino mass splitting and flavor mixing by MINOS, Phys. Rev. Lett. 106 (2011) 181801 [arXiv:1103.0340] [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    KamLAND collaboration, K. Eguchi et al., First results from KamLAND: Evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    SNO collaboration, B. Aharmim et al., Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory, Phys. Rev. C 88 (2013) 025501 [arXiv:1109.0763] [INSPIRE].Google Scholar
  64. [64]
    Borexino collaboration, G. Bellini et al., Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006 [arXiv:0808.2868] [INSPIRE].ADSGoogle Scholar
  65. [65]
    Borexino collaboration, D. D’Angelo et al., Recent Borexino results and prospects for the near future, arXiv:1405.7919 [INSPIRE].
  66. [66]
    A.M. Serenelli, W.C. Haxton and C. Pena-Garay, Solar models with accretion. I. Application to the solar abundance problem, Astrophys. J. 743 (2011) 24 [arXiv:1104.1639] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S. Dev and S. Kumar, Constraints on weakly mixed sterile neutrinos in the light of SNO salt phase and 766.3 Ty KamLAND data, Mod. Phys. Lett. A 20 (2005) 2957 [hep-ph/0504237] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M. Cirelli, G. Marandella, A. Strumia and F. Vissani, Probing oscillations into sterile neutrinos with cosmology, astrophysics and experiments, Nucl. Phys. B 708 (2005) 215 [hep-ph/0403158] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    Super-Kamiokande collaboration, K. Abe et al., Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande, Phys. Rev. D 91 (2015) 052019 [arXiv:1410.2008] [INSPIRE].ADSGoogle Scholar
  70. [70]
    A. Esmaili and A.Y. Smirnov, Probing Non-Standard Interaction of Neutrinos with IceCube and DeepCore, JHEP 06 (2013) 026 [arXiv:1304.1042] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov, Improving Electro-Weak Fits with TeV-scale Sterile Neutrinos, JHEP 05 (2013) 081 [arXiv:1302.1872] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].ADSGoogle Scholar
  73. [73]
    J. Orloff, A.N. Rozanov and C. Santoni, Limits on the mixing of tau neutrino to heavy neutrinos, Phys. Lett. B 550 (2002) 8 [hep-ph/0208075] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    NOMAD collaboration, P. Astier et al., Search for heavy neutrinos mixing with tau neutrinos, Phys. Lett. B 506 (2001) 27 [hep-ex/0101041] [INSPIRE].ADSGoogle Scholar
  75. [75]
    DELPHI collaboration, P. Abreu et al., Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [Erratum ibid. C 75 (1997) 580] [INSPIRE].
  76. [76]
    B. Batell, M. Pospelov and A. Ritz, Exploring Portals to a Hidden Sector Through Fixed Targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].ADSGoogle Scholar
  77. [77]
    P. deNiverville, M. Pospelov and A. Ritz, Observing a light dark matter beam with neutrino experiments, Phys. Rev. D 84 (2011) 075020 [arXiv:1107.4580] [INSPIRE].
  78. [78]
    P. deNiverville, D. McKeen and A. Ritz, Signatures of sub-GeV dark matter beams at neutrino experiments, Phys. Rev. D 86 (2012) 035022 [arXiv:1205.3499] [INSPIRE].
  79. [79]
    B. Batell, P. deNiverville, D. McKeen, M. Pospelov and A. Ritz, Leptophobic Dark Matter at Neutrino Factories, Phys. Rev. D 90 (2014) 115014 [arXiv:1405.7049] [INSPIRE].
  80. [80]
    P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, JHEP 05 (2014) 046 [arXiv:1303.3570] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    D. Hooper, M. Kaplinghat, L.E. Strigari and K.M. Zurek, MeV Dark Matter and Small Scale Structure, Phys. Rev. D 76 (2007) 103515 [arXiv:0704.2558] [INSPIRE].ADSGoogle Scholar
  82. [82]
    P. Gondolo, J. Hisano and K. Kadota, The Effect of quark interactions on dark matter kinetic decoupling and the mass of the smallest dark halos, Phys. Rev. D 86 (2012) 083523 [arXiv:1205.1914] [INSPIRE].ADSGoogle Scholar
  83. [83]
    T. Bringmann and S. Hofmann, Thermal decoupling of WIMPs from first principles, JCAP 07 (2007) 016 [hep-ph/0612238] [INSPIRE].CrossRefGoogle Scholar
  84. [84]
    C. Boehm, J.A. Schewtschenko, R.J. Wilkinson, C.M. Baugh and S. Pascoli, Using the Milky Way satellites to study interactions between cold dark matter and radiation, Mon. Not. Roy. Astron. Soc. 445 (2014) L31 [arXiv:1404.7012] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    M.R. Buckley, J. Zavala, F.-Y. Cyr-Racine, K. Sigurdson and M. Vogelsberger, Scattering, Damping and Acoustic Oscillations: Simulating the Structure of Dark Matter Halos with Relativistic Force Carriers, Phys. Rev. D 90 (2014) 043524 [arXiv:1405.2075] [INSPIRE].ADSGoogle Scholar
  86. [86]
    H.-T. Janka, K. Langanke, A. Marek, G. Martinez-Pinedo and B. Mueller, Theory of Core-Collapse Supernovae, Phys. Rept. 442 (2007) 38 [astro-ph/0612072] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    H.-T. Janka, Explosion Mechanisms of Core-Collapse Supernovae, Ann. Rev. Nucl. Part. Sci. 62 (2012) 407 [arXiv:1206.2503] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    D.A. Dicus, S. Nussinov, P.B. Pal and V.L. Teplitz, Implications of Relativistic Gas Dynamics for Neutrino-neutrino Cross-sections, Phys. Lett. B 218 (1989) 84 [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    P. Fayet, D. Hooper and G. Sigl, Constraints on light dark matter from core-collapse supernovae, Phys. Rev. Lett. 96 (2006) 211302 [hep-ph/0602169] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    B. Bertoni, D. McKeen, A. E. Nelson, and S. Reddy, in preparation.Google Scholar
  91. [91]
    G. Mangano, A. Melchiorri, P. Serra, A. Cooray and M. Kamionkowski, Cosmological bounds on dark matter-neutrino interactions, Phys. Rev. D 74 (2006) 043517 [astro-ph/0606190] [INSPIRE].ADSGoogle Scholar
  92. [92]
    Y. Farzan and S. Palomares-Ruiz, Dips in the Diffuse Supernova Neutrino Background, JCAP 06 (2014) 014 [arXiv:1401.7019] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    K. Blum, A. Hook and K. Murase, High energy neutrino telescopes as a probe of the neutrino mass mechanism, arXiv:1408.3799 [INSPIRE].
  94. [94]
    F. Governato et al., At the heart of the matter: the origin of bulgeless dwarf galaxies and Dark Matter cores, Nature 463 (2010) 203 [arXiv:0911.2237] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    F. Governato et al., Cuspy No More: How Outflows Affect the Central Dark Matter and Baryon Distribution in Lambda CDM Galaxies, Mon. Not. Roy. Astron. Soc. 422 (2012) 1231 [arXiv:1202.0554] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    R. Teyssier, A. Pontzen, Y. Dubois and J. Read, Cusp-core transformations in dwarf galaxies: observational predictions, Mon. Not. Roy. Astron. Soc. 429 (2013) 3068 [arXiv:1206.4895] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    A. Zolotov et al., Baryons Matter: Why Luminous Satellite Galaxies Have Reduced Central Masses, Astrophys. J. 761 (2012) 71 [arXiv:1207.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    P. Madau, S. Shen and F. Governato, Dark Matter Heating and Early Core Formation in Dwarf Galaxies, Astrophys. J. 789 (2014) L17 [arXiv:1405.2577] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    A. Pontzen and F. Governato, How supernova feedback turns dark matter cusps into cores, Mon. Not. Roy. Astron. Soc. 421 (2012) 3464 [arXiv:1106.0499] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    J. Penarrubia, A. Pontzen, M.G. Walker and S.E. Koposov, The coupling between the core/cusp and missing satellite problems, Astrophys. J. 759 (2012) L42 [arXiv:1207.2772] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    G. Ogiya and A. Burkert, Re-examining the Too-Big-To-Fail Problem for Dark Matter Haloes with Central Density Cores, Mon. Not. Roy. Astron. Soc. 446 (2015) 2363 [arXiv:1408.6444] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    M. Boylan-Kolchin, J.S. Bullock and M. Kaplinghat, The Milky Ways bright satellites as an apparent failure of LCDM, Mon. Not. Roy. Astron. Soc. 422 (2012) 1203 [arXiv:1111.2048] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    S. Garrison-Kimmel, M. Rocha, M. Boylan-Kolchin, J. Bullock and J. Lally, Can Feedback Solve the Too Big to Fail Problem?, arXiv:1301.3137 [INSPIRE].
  104. [104]
    I.M. Nugent, Determination ofVusfrom tau Decays, arXiv:1301.0637 [INSPIRE].
  105. [105]
    S. Choubey and T. Ohlsson, Bounds on Non-Standard Neutrino Interactions Using PINGU, Phys. Lett. B 739 (2014) 357 [arXiv:1410.0410] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    R. Alonso et al., Summary report of MINSIS workshop in Madrid, arXiv:1009.0476 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Bridget Bertoni
    • 1
  • Seyda Ipek
    • 1
  • David McKeen
    • 1
  • Ann E. Nelson
    • 1
  1. 1.Department of PhysicsUniversity of WashingtonSeattleUnited States

Personalised recommendations