Advertisement

Kähler potential and ambiguities in 4d \( \mathcal{N} \) = 2 SCFTs

Open Access
Regular Article - Theoretical Physics

Abstract

The partition function of four-dimensional \( \mathcal{N} \) = 2 superconformal field theories on S4 computes the exact Kähler potential on the space of exactly marginal couplings [1]. We present a new elementary proof of this result using supersymmetry Ward identities. The partition function is a section rather than a function, and is subject to ambiguities coming from Kähler transformations acting on the Kähler potential. This ambiguity is realized by a local supergravity counterterm in the underlying SCFT. We provide an explicit construction of the Kähler ambiguity counterterm in the four dimensional \( \mathcal{N} \) = 2 off-shell supergravity theory that admits S4 as a supersymmetric background.

Keywords

Supersymmetric gauge theory Extended Supersymmetry Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Gerchkovitz, J. Gomis and Z. Komargodski, Sphere partition functions and the Zamolodchikov metric, JHEP 11 (2014) 001 [arXiv:1405.7271] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    J. Gomis and S. Lee, Exact Kähler potential from gauge theory and mirror symmetry, JHEP 04 (2013) 019 [arXiv:1210.6022] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    H. Jockers, V. Kumar, J.M. Lapan, D.R. Morrison and M. Romo, Two-Sphere Partition Functions and Gromov-Witten Invariants, Commun. Math. Phys. 325 (2014) 1139 [arXiv:1208.6244] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    F. Benini and S. Cremonesi, Partition Functions of \( \mathcal{N} \) = (2,2) Gauge Theories on S 2 and Vortices, Commun. Math. Phys. 334 (2015) 1483 [arXiv:1206.2356] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact results in D = 2 supersymmetric gauge theories, JHEP 05 (2013) 093 [arXiv:1206.2606] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    N. Doroud and J. Gomis, Gauge theory dynamics and Kähler potential for Calabi-Yau complex moduli, JHEP 1312 (2013) 99 [arXiv:1309.2305] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Baggio, V. Niarchos and K. Papadodimas, tt * equations, localization and exact chiral rings in 4d \( \mathcal{N} \) = 2 SCFTs, JHEP 02 (2015) 122 [arXiv:1409.4212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    M. Baggio, V. Niarchos and K. Papadodimas, Exact correlation functions in SU(2) \( \mathcal{N} \) = 2 superconformal QCD, Phys. Rev. Lett. 113 (2014) 251601 [arXiv:1409.4217] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    P. Breitenlohner and M.F. Sohnius, An Almost Simple Off-shell Version of SU(2) Poincaré Supergravity, Nucl. Phys. B 178 (1981) 151 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A.V. Proeyen, \( \mathcal{N} \) = 2 supergravity in d = 4, 5, 6 and its matter couplings, http://itf.fys.kuleuven.be/toine/LectParis.pdf.
  12. [12]
    N. Seiberg, Naturalness versus supersymmetric nonrenormalization theorems, Phys. Lett. B 318 (1993) 469 [hep-ph/9309335] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    D.Z. Freedman and A.V. Proeyen, Supergravity, Cambridge University Press, New York, U.S.A. (2012).CrossRefMATHGoogle Scholar
  15. [15]
    B. de Wit, J.W. van Holten and A. Van Proeyen, Structure of N = 2 Supergravity, Nucl. Phys. B 184 (1981) 77 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N. Hama and K. Hosomichi, Seiberg-Witten theories on ellipsoids, JHEP 09 (2012) 033 [arXiv:1206.6359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    C. Klare and A. Zaffaroni, Extended supersymmetry on curved spaces, JHEP 10 (2013) 218 [arXiv:1308.1102] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    S. Ferrara and P. van Nieuwenhuizen, Consistent supergravity with complex spin 3/2 gauge fields, Phys. Rev. Lett. 37 (1976) 1669 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    B. de Wit, J.W. van Holten and A. Van Proeyen, Transformation Rules of N = 2 Supergravity Multiplets, Nucl. Phys. B 167 (1980) 186 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    B. de Wit and J.W. van Holten, Multiplets of Linearized SO(2) Supergravity, Nucl. Phys. B 155 (1979) 530 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    B. de Wit, R. Philippe and A. Van Proeyen, The Improved Tensor Multiplet in N = 2 Supergravity, Nucl. Phys. B 219 (1983) 143 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. de Roo, J.W. van Holten, B. de Wit and A. Van Proeyen, Chiral Superfields in N = 2 Supergravity, Nucl. Phys. B 173 (1980) 175 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    G. Lopes Cardoso, B. de Wit and T. Mohaupt, Corrections to macroscopic supersymmetric black hole entropy, Phys. Lett. B 451 (1999) 309 [hep-th/9812082] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    D. Butter and S.M. Kuzenko, New higher-derivative couplings in 4D N = 2 supergravity, JHEP 03 (2011) 047 [arXiv:1012.5153] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    B. de Wit, S. Katmadas and M. van Zalk, New supersymmetric higher-derivative couplings: full N = 2 superspace does not count!, JHEP 01 (2011) 007 [arXiv:1010.2150] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    D. Butter, B. de Wit, S.M. Kuzenko and I. Lodato, New higher-derivative invariants in N =2 supergravity and the Gauss-Bonnet term, JHEP 12 (2013) 062[arXiv:1307.6546] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    S.M. Kuzenko, Super-Weyl anomalies in N = 2 supergravity and (non)local effective actions, JHEP 10 (2013) 151 [arXiv:1307.7586] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    D. Butter, B. de Wit and I. Lodato, Non-renormalization theorems and N = 2 supersymmetric backgrounds, JHEP 03 (2014) 131 [arXiv:1401.6591] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Department of PhysicsUniversity of WaterlooWaterlooCanada

Personalised recommendations