Advertisement

Higgs boson pair production in the D = 6 extension of the SM

  • Florian Goertz
  • Andreas Papaefstathiou
  • Li Lin Yang
  • José Zurita
Open Access
Regular Article - Theoretical Physics

Abstract

We derive the constraints that can be imposed on the dimension-6 effective theory extension of the Standard Model, using gluon fusion-initiated Higgs boson pair production at the LHC. We use a realistic analysis focussing on the \( hh\to \left(b\overline{b}\right)\left({\tau}^{+}{\tau}^{-}\right) \) final state, including initial-state radiation and non-perturbative effects. We include the statistical uncertainties on the signal rates as well as conservative estimates of the theoretical uncertainties. We first consider a theory containing only modifications of the trilinear coupling, through a c6λ H6/v2 Lagrangian term, and then examine the full parameter space of the effective theory, incorporating current bounds obtained through single Higgs boson measurements. We also consider an alternative scenario, where we vary a smaller sub-set of parameters. Allowing, finally, the values of the other coefficients to vary within projected experimental ranges, we find that the currently unbounded parameter, c6, could be constrained to lie within |c6| ≲ 0.6 at 1σ confidence, at the end of the high-luminosity run of the LHC (14 TeV) in the full model, and to −0.6 ≲ c6 ≲ 0.5 in the alternative model. This study constitutes a first step towards the inclusion of multi-Higgs boson production in a full fit to the dimension-6 effective field theory framework.

Keywords

Higgs Physics Effective field theories Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, CMS-HIG-12-028 (2012).
  3. [3]
    F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    CMS collaboration, Update on the search for the standard model Higgs boson in pp collisions at the LHC decaying to W + W in the fully leptonic final state, CMS-PAS-HIG-13-003 (2014).Google Scholar
  7. [7]
    CMS collaboration, Evidence for the 125 GeV Higgs boson decaying to a pair of τ leptons, JHEP 05 (2014) 104 [CMS-HIG-13-004] [arXiv:1401.5041] [INSPIRE].
  8. [8]
    CMS collaboration, Search for a Higgs boson decaying into a Z and a photon in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, Phys. Lett. B 726 (2013) 587 [CMS-HIG-13-006] [arXiv:1307.5515] [INSPIRE].
  9. [9]
    CMS collaboration, Search for SM Higgs in WHWWW → 3l3ν, CMS-HIG-13-009 (2013).
  10. [10]
    CMS collaboration, Search for a standard model-like Higgs boson in the μ + μ and e + e decay channels at the LHC, CMS-HIG-13-007 (2014) [arXiv:1410.6679] [INSPIRE].
  11. [11]
    CMS collaboration, Search for the associated production of the Higgs boson with a top-quark pair, JHEP 09 (2014) 087 [CMS-HIG-13-029] [arXiv:1408.1682] [INSPIRE].
  12. [12]
    CMS collaboration, Observation of the diphoton decay of the Higgs boson and measurement of its properties, Eur. Phys. J. C 74 (2014) 3076 [CMS-HIG-13-001] [arXiv:1407.0558] [INSPIRE].
  13. [13]
    CMS collaboration, Evidence for the direct decay of the 125 GeV Higgs boson to fermions, Nature Phys. 10 (2014) 557 [CMS-HIG-13-033] [arXiv:1401.6527] [INSPIRE].
  14. [14]
    CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89 (2014) 092007 [CMS-HIG-13-002] [arXiv:1312.5353] [INSPIRE].
  15. [15]
    CMS collaboration, Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks,CMS-HIG-13-012(2013).
  16. [16]
    CMS collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, Phys. Rev. D 89 (2014) 012003 [CMS-HIG-13-023] [arXiv:1310.3687] [INSPIRE].
  17. [17]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the HZγ decay mode with pp collisions at \( \sqrt{s}=7 \) and 8 TeV, ATLAS-CONF-2013-009 (2013).
  18. [18]
    ATLAS collaboration, Search for a standard model Higgs boson in Hμμ decays with the ATLAS detector, ATLAS-CONF-2013-010 (2013).
  19. [19]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
  20. [20]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
  21. [21]
    AUTHOR NEEDED, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-HIGG-2013-013(2015).
  22. [22]
    ATLAS collaboration, Evidence for Higgs boson Yukawa couplings in the Hττ decay mode with the ATLAS detector, ATLAS-CONF-2014-061 (2014).
  23. [23]
    ATLAS collaboration, Search for the \( b\overline{b} \) decay of the Standard Model Higgs boson in associated (W/Z)H production with the ATLAS detector, ATLAS-HIGG-2013-23 (2014).
  24. [24]
    ATLAS collaboration, Search for Hγγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector, ATLAS-HIGG-2013-25 (2014).
  25. [25]
    ATLAS collaboration, Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, ATLAS-HIGG-2013-08 (2014).
  26. [26]
    ATLAS collaboration, Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, ATLAS-HIGG-2013-21 (2014).
  27. [27]
    ATLAS collaboration, Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-HIGG-2013-22 (2014).
  28. [28]
    ATLAS collaboration, Search for the standard model Higgs boson decay to μ+μ with the ATLAS detector, ATLAS-HIGG-2013-07 (2014).
  29. [29]
    CMS collaboration, Precise determination of the mass of the Higgs boson and studies of the compatibility of its couplings with the standard model, CMS-PAS-HIG-14-009 (2014).
  30. [30]
    M. McCullough, An indirect model-dependent probe of the Higgs self-coupling, Phys. Rev. D 90 (2014) 015001 [arXiv:1312.3322] [INSPIRE].ADSGoogle Scholar
  31. [31]
    T. Plehn and M. Rauch, The quartic Higgs coupling at hadron colliders, Phys. Rev. D 72 (2005) 053008 [hep-ph/0507321] [INSPIRE].ADSGoogle Scholar
  32. [32]
    T. Binoth, S. Karg, N. Kauer and R. Ruckl, Multi-Higgs boson production in the standard model and beyond, Phys. Rev. D 74 (2006) 113008 [hep-ph/0608057] [INSPIRE].ADSGoogle Scholar
  33. [33]
    F. Maltoni, E. Vryonidou and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, JHEP 11 (2014) 079 [arXiv:1408.6542] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, Production of neutral Higgs boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [hep-ph/9603205] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D. de Florian and J. Mazzitelli, Higgs boson pair production at next-to-next-to-leading order in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    D. de Florian and J. Mazzitelli, Two-loop virtual corrections to Higgs pair production, Phys. Lett. B 724 (2013) 306 [arXiv:1305.5206] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  40. [40]
    J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the LHC, Nucl. Phys. B 875 (2013) 1 [arXiv:1305.7340] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    U. Baur, T. Plehn and D.L. Rainwater, Determining the Higgs boson selfcoupling at hadron colliders, Phys. Rev. D 67 (2003) 033003 [hep-ph/0211224] [INSPIRE].ADSGoogle Scholar
  42. [42]
    U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A.J. Barr, M.J. Dolan, C. Englert and M. Spannowsky, Di-Higgs final states augMT2edSelecting hh events at the high luminosity LHC, Phys. Lett. B 728 (2014) 308 [arXiv:1309.6318] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M.J. Dolan, C. Englert, N. Greiner and M. Spannowsky, Further on up the road: hhjj production at the LHC, Phys. Rev. Lett. 112 (2014) 101802 [arXiv:1310.1084] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the \( b\overline{b}{W}^{+}{W}^{-} \) channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].ADSGoogle Scholar
  48. [48]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson self-coupling measurements using ratios of cross sections, JHEP 06 (2013) 016 [arXiv:1301.3492] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Measuring the Higgs boson self-coupling at the LHC using ratios of cross sections, arXiv:1309.3805 [INSPIRE].
  50. [50]
    P. Maierhöfer and A. Papaefstathiou, Higgs boson pair production merged to one jet, JHEP 03 (2014) 126 [arXiv:1401.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    C. Englert, F. Krauss, M. Spannowsky and J. Thompson, Di-Higgs phenomenology in \( t\overline{t}hh \) : the forgotten channel, Phys. Lett. B 743 (2015) 93 [arXiv:1409.8074] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    T. Liu and H. Zhang, Measuring di-higgs physics via the \( t\overline{t}hh\to t\overline{t}b\overline{b}b\overline{b} \) channel, arXiv:1410.1855 [INSPIRE].
  53. [53]
    R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M.J. Dolan, C. Englert and M. Spannowsky, New physics in LHC Higgs boson pair production, Phys. Rev. D 87 (2013) 055002 [arXiv:1210.8166] [INSPIRE].ADSGoogle Scholar
  55. [55]
    N. Craig, J. Galloway and S. Thomas, Searching for signs of the second Higgs doublet, arXiv:1305.2424 [INSPIRE].
  56. [56]
    R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure the Higgs boson mass and self-coupling?, Phys. Rev. D 88 (2013) 055024 [arXiv:1305.6397] [INSPIRE].ADSGoogle Scholar
  57. [57]
    R. Killick, K. Kumar and H.E. Logan, Learning what the Higgs boson is mixed with, Phys. Rev. D 88 (2013) 033015 [arXiv:1305.7236] [INSPIRE].ADSGoogle Scholar
  58. [58]
    S.Y. Choi, C. Englert and P.M. Zerwas, Multiple Higgs-portal and gauge-kinetic mixings, Eur. Phys. J. C 73 (2013) 2643 [arXiv:1308.5784] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J. Cao, Z. Heng, L. Shang, P. Wan and J.M. Yang, Pair production of a 125 GeV Higgs boson in MSSM and NMSSM at the LHC, JHEP 04 (2013) 134 [arXiv:1301.6437] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    D.T. Nhung, M. Muhlleitner, J. Streicher and K. Walz, Higher order corrections to the trilinear Higgs self-couplings in the real NMSSM, JHEP 11 (2013) 181 [arXiv:1306.3926] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J. Galloway, M.A. Luty, Y. Tsai and Y. Zhao, Induced electroweak symmetry breaking and supersymmetric naturalness, Phys. Rev. D 89 (2014) 075003 [arXiv:1306.6354] [INSPIRE].ADSGoogle Scholar
  62. [62]
    U. Ellwanger, Higgs pair production in the NMSSM at the LHC, JHEP 08 (2013) 077 [arXiv:1306.5541] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    C. Han, X. Ji, L. Wu, P. Wu and J.M. Yang, Higgs pair production with SUSY QCD correction: revisited under current experimental constraints, JHEP 04 (2014) 003 [arXiv:1307.3790] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J.M. No and M. Ramsey-Musolf, Probing the Higgs portal at the LHC through resonant di-Higgs production, Phys. Rev. D 89 (2014) 095031 [arXiv:1310.6035] [INSPIRE].ADSGoogle Scholar
  65. [65]
    R. Grober and M. Muhlleitner, Composite Higgs boson pair production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    R. Contino et al., Anomalous couplings in double Higgs production, JHEP 08 (2012) 154 [arXiv:1205.5444] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner and E. Salvioni, Higgs low-energy theorem (and its corrections) in composite models, JHEP 10 (2012) 004 [arXiv:1206.7120] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    G.D. Kribs and A. Martin, Enhanced di-Higgs production through light colored scalars, Phys. Rev. D 86 (2012) 095023 [arXiv:1207.4496] [INSPIRE].ADSGoogle Scholar
  69. [69]
    S. Dawson, E. Furlan and I. Lewis, Unravelling an extended quark sector through multiple Higgs production?, Phys. Rev. D 87 (2013) 014007 [arXiv:1210.6663] [INSPIRE].ADSGoogle Scholar
  70. [70]
    C.-Y. Chen, S. Dawson and I.M. Lewis, Top partners and Higgs boson production, Phys. Rev. D 90 (2014) 035016 [arXiv:1406.3349] [INSPIRE].ADSGoogle Scholar
  71. [71]
    K. Nishiwaki, S. Niyogi and A. Shivaji, ttH anomalous coupling in double Higgs production, JHEP 04 (2014) 011 [arXiv:1309.6907] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    J. Liu, X.-P. Wang and S.-h. Zhu, Discovering extra Higgs boson via pair production of the SM-like Higgs bosons, arXiv:1310.3634 [INSPIRE].
  73. [73]
    T. Enkhbat, Scalar leptoquarks and Higgs pair production at the LHC, JHEP 01 (2014) 158 [arXiv:1311.4445] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    Z. Heng, L. Shang, Y. Zhang and J. Zhu, Pair production of 125 GeV Higgs boson in the SM extension with color-octet scalars at the LHC, JHEP 02 (2014) 083 [arXiv:1312.4260] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    J. Baglio, O. Eberhardt, U. Nierste and M. Wiebusch, Benchmarks for Higgs pair production and heavy Higgs boson searches in the two-Higgs-doublet model of type II, Phys. Rev. D 90 (2014) 015008 [arXiv:1403.1264] [INSPIRE].ADSGoogle Scholar
  77. [77]
    B. Hespel, D. Lopez-Val and E. Vryonidou, Higgs pair production via gluon fusion in the two-Higgs-doublet model, JHEP 09 (2014) 124 [arXiv:1407.0281] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  78. [78]
    B. Bhattacherjee and A. Choudhury, The role of MSSM heavy Higgs production in the self coupling measurement of the 125 GeV Higgs boson at the LHC, arXiv:1407.6866 [INSPIRE].
  79. [79]
    N. Liu, S. Hu, B. Yang and J. Han, Impact of top-Higgs couplings on di-Higgs production at future colliders, JHEP 01 (2015) 008 [arXiv:1408.4191] [INSPIRE].ADSGoogle Scholar
  80. [80]
    J. Cao, D. Li, L. Shang, P. Wu and Y. Zhang, Exploring the Higgs sector of a most natural NMSSM and its prediction on Higgs pair production at the LHC, JHEP 12 (2014) 026 [arXiv:1409.8431] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    B. Grinstein and M. Trott, A Higgs-higgs bound state due to new physics at a TeV, Phys. Rev. D 76 (2007) 073002 [arXiv:0704.1505] [INSPIRE].ADSGoogle Scholar
  82. [82]
    R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The effective chiral lagrangian for a light dynamicalHiggs particle”, Phys. Lett. B 722 (2013) 330 [arXiv:1212.3305] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  83. [83]
    G. Buchalla, O. Catà and C. Krause, Complete electroweak chiral lagrangian with a light Higgs at NLO, Nucl. Phys. B 880 (2014) 552 [arXiv:1307.5017] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  84. [84]
    W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  86. [86]
    J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    A. Pomarol and F. Riva, Towards the ultimate SM fit to close in on Higgs physics, JHEP 01 (2014) 151 [arXiv:1308.2803] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    B. Dumont, S. Fichet and G. von Gersdorff, A Bayesian view of the Higgs sector with higher dimensional operators, JHEP 07 (2013) 065 [arXiv:1304.3369] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  89. [89]
    T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar
  90. [90]
    T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].ADSGoogle Scholar
  91. [91]
    T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Determining triple gauge boson couplings from Higgs data, Phys. Rev. Lett. 111 (2013) 011801 [arXiv:1304.1151] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  93. [93]
    M. Trott, On the consistent use of constructed observables, JHEP 02 (2015) 046 [arXiv:1409.7605] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    F. Goertz, Indirect handle on the down-quark Yukawa coupling, Phys. Rev. Lett. 113 (2014) 261803 [arXiv:1406.0102] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    M.B. Einhorn and J. Wudka, The bases of effective field theories, Nucl. Phys. B 876 (2013) 556 [arXiv:1307.0478] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  99. [99]
    E.E. Jenkins, A.V. Manohar and M. Trott, On gauge invariance and minimal coupling, JHEP 09 (2013) 063 [arXiv:1305.0017] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    T. Plehn, Lectures on LHC physics, Lect. Notes Phys. 844 (2012) 1 [arXiv:0910.4182] [INSPIRE].CrossRefMATHGoogle Scholar
  101. [101]
    Wolfram Research Inc., Mathematica (2014).Google Scholar
  102. [102]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    M. Farina, C. Grojean, F. Maltoni, E. Salvioni and A. Thamm, Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson, JHEP 05 (2013) 022 [arXiv:1211.3736] [INSPIRE].ADSGoogle Scholar
  105. [105]
    R. Contino, M. Ghezzi, C. Grojean, M. Mühlleitner and M. Spira, eHDECAY: an implementation of the Higgs effective lagrangian into HDECAY, Comput. Phys. Commun. 185 (2014) 3412 [arXiv:1403.3381] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  106. [106]
  107. [107]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Improved description of Higgs boson pair production in the D = 6 extension of the SM, in preparation.Google Scholar
  108. [108]
    C. Englert and M. Spannowsky, Effective theories and measurements at colliders, Phys. Lett. B 740 (2015) 8 [arXiv:1408.5147] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  110. [110]
    S. Frixione, F. Stoeckli, P. Torrielli and B.R. Webber, NLO QCD corrections in HERWIG++ with MC@NLO, JHEP 01 (2011) 053 [arXiv:1010.0568] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  111. [111]
    R. Frederix et al., Scalar and pseudoscalar Higgs production in association with a top-antitop pair, Phys. Lett. B 701 (2011) 427 [arXiv:1104.5613] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Precision predictions for the \( t+\overline{t} \) production cross section at hadron colliders, Phys. Lett. B 703 (2011) 135 [arXiv:1105.5824] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(α S4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    M. Bahr, S. Gieseke and M.H. Seymour, Simulation of multiple partonic interactions in HERWIG++, JHEP 07 (2008) 076 [arXiv:0803.3633] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    P. Bechtle et al., HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, HiggsSignals: confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].Google Scholar
  122. [122]
    A. Freitas and P. Schwaller, Higgs CP properties from early LHC data, Phys. Rev. D 87 (2013) 055014 [arXiv:1211.1980] [INSPIRE].ADSGoogle Scholar
  123. [123]
    J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    M.J. Dolan, P. Harris, M. Jankowiak and M. Spannowsky, Constraining CP-violating Higgs sectors at the LHC using gluon fusion, Phys. Rev. D 90 (2014) 073008 [arXiv:1406.3322] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Florian Goertz
    • 1
    • 2
  • Andreas Papaefstathiou
    • 2
    • 3
  • Li Lin Yang
    • 4
    • 5
    • 6
  • José Zurita
    • 7
  1. 1.Institute for Theoretical PhysicsETH ZürichZürichSwitzerland
  2. 2.PH Department, TH UnitCERNGeneva 23Switzerland
  3. 3.Physik-InstitutUniversität ZürichZürichSwitzerland
  4. 4.School of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina
  5. 5.Collaborative Innovation Center of Quantum MatterBeijingChina
  6. 6.Center for High Energy PhysicsPeking UniversityBeijingChina
  7. 7.PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics Johannes Gutenberg UniversityMainzGermany

Personalised recommendations