Ultraviolet divergences in maximal supergravity from a pure spinor point of view

Open Access
Regular Article - Theoretical Physics

Abstract

The ultraviolet divergences of amplitude diagrams in maximal supergravity are investigated using the pure spinor superfield formalism in maximal supergravity, with maximally supersymmetric Yang-Mills theory for reference. We comment on the effects of the loop regularisation in relation to the actual absence of high powers (within the degrees of freedom) of the non-minimal variable r. The absence affects previous results of the field theory description, which is examined more closely (with a new b-ghost) with respect to the limit on the dimension for finiteness of the theory, dependent on the number of loops present. The results imply a cut-off of the loop dependence at six loops for the 4-point amplitude, and at seven loops otherwise.

Keywords

Extended Supersymmetry Superspaces BRST Quantization Supergravity Modelsh 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    S. Mandelstam, Light cone superspace and the ultraviolet finiteness of the N = 4 model, Nucl. Phys. B 213 (1983) 149 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    L. Brink, O. Lindgren and B.E.W. Nilsson, The ultraviolet finiteness of the N = 4 Yang-Mills theory, Phys. Lett. B 123 (1983) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P.S. Howe, K.S. Stelle and P.K. Townsend, Miraculous ultraviolet cancellations in supersymmetry made manifest, Nucl. Phys. B 236 (1984) 125 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    E. Cremmer, B. Julia and J. Scherk, Supergravity theory in eleven-dimensions, Phys. Lett. B 76 (1978) 409 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L. Brink and P.S. Howe, Eleven-dimensional supergravity on the mass-shell in superspace, Phys. Lett. B 91 (1980) 384 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    E. Cremmer and S. Ferrara, Formulation of eleven-dimensional supergravity in superspace, Phys. Lett. B 91 (1980) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Z. Bern et al., Three-loop superfiniteness of N = 8 supergravity, Phys. Rev. Lett. 98 (2007) 161303 [hep-th/0702112] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Manifest ultraviolet behavior for the three-loop four-point amplitude of N = 8 supergravity, Phys. Rev. D 78 (2008) 105019 [arXiv:0808.4112] [INSPIRE].ADSGoogle Scholar
  11. [11]
    Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes, Phys. Rev. D 85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M.T. Grisaru, P. van Nieuwenhuizen and J.A.M. Vermaseren, One loop renormalizability of pure supergravity and of Maxwell-Einstein theory in extended supergravity, Phys. Rev. Lett. 37 (1976) 1662 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    M.T. Grisaru, Two loop renormalizability of supergravity, Phys. Lett. B 66 (1977) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Deser, J.H. Kay and K.S. Stelle, Renormalizability properties of supergravity, Phys. Rev. Lett. 38 (1977) 527 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    E. Tomboulis, On the two loop divergences of supersymmetric gravitation, Phys. Lett. B 67 (1977) 417 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Deser and J.H. Kay, Three loop counterterms for extended supergravity, Phys. Lett. B 76 (1978) 400 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Deser and U. Lindström, Extended supersymmetry invariants by dimensional reduction, Phys. Lett. B 90 (1980) 68 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring, JHEP 09 (2004) 047 [hep-th/0406055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    N. Berkovits and N. Nekrasov, Multiloop superstring amplitudes from non-minimal pure spinor formalism, JHEP 12 (2006) 029 [hep-th/0609012] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    N.E.J. Bjerrum-Bohr and P. Vanhove, On cancellations of ultraviolet divergences in supergravity amplitudes, Fortsch. Phys. 56 (2008) 824 [arXiv:0806.1726] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    R. Kallosh, C.H. Lee and T. Rube, N = 8 supergravity 4-point amplitudes, JHEP 02 (2009) 050 [arXiv:0811.3417] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    G. Bossard, P.S. Howe and K.S. Stelle, The ultra-violet question in maximally supersymmetric field theories, Gen. Rel. Grav. 41 (2009) 919 [arXiv:0901.4661] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    Y. Aisaka and N. Berkovits, Pure spinor vertex operators in Siegel gauge and loop amplitude regularization, JHEP 07 (2009) 062 [arXiv:0903.3443] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    J. Broedel and L.J. Dixon, R 4 counterterm and E 7(7) symmetry in maximal supergravity, JHEP 05 (2010) 003 [arXiv:0911.5704] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Vanhove, The critical ultraviolet behaviour of N = 8 supergravity amplitudes, arXiv:1004.1392 [INSPIRE].
  26. [26]
    G. Bossard, C. Hillmann and H. Nicolai, E 7(7) symmetry in perturbatively quantised N = 8 supergravity, JHEP 12 (2010) 052 [arXiv:1007.5472] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    N. Beisert et al., E 7(7) constraints on counterterms in N = 8 supergravity, Phys. Lett. B 694 (2010) 265 [arXiv:1009.1643] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Bjornsson and M.B. Green, 5 loops in 24/5 dimensions, JHEP 08 (2010) 132 [arXiv:1004.2692] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    J. Bjornsson, Multi-loop amplitudes in maximally supersymmetric pure spinor field theory, JHEP 01 (2011) 002 [arXiv:1009.5906] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    M. Cederwall and A. Karlsson, Loop amplitudes in maximal supergravity with manifest supersymmetry, JHEP 03 (2013) 114 [arXiv:1212.5175] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    M. Cederwall, Pure spinor superfields: an overview, Springer Proc. Phys. 153 (2014) 61 [arXiv:1307.1762] [INSPIRE].CrossRefGoogle Scholar
  32. [32]
    A. Karlsson, Loop amplitude diagrams in manifest, maximal supergravity, Springer Proc. Phys. 153 (2014) 95 [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    N. Berkovits, Covariant quantization of the superparticle using pure spinors, JHEP 09 (2001) 016 [hep-th/0105050] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    M. Cederwall, Towards a manifestly supersymmetric action for 11-dimensional supergravity, JHEP 01 (2010) 117 [arXiv:0912.1814] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    M. Cederwall, D = 11 supergravity with manifest supersymmetry, Mod. Phys. Lett. A 25 (2010) 3201 [arXiv:1001.0112] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    I.A. Batalin and G.A. Vilkovisky, Gauge algebra and quantization, Phys. Lett. B 102 (1981) 27 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Fuster, M. Henneaux and A. Maas, BRST quantization: a short review, Int. J. Geom. Meth. Mod. Phys. 2 (2005) 939 [hep-th/0506098] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    W. Siegel, Introduction to string field theory, hep-th/0107094 [INSPIRE].
  40. [40]
    N. Berkovits, Pure spinor formalism as an N = 2 topological string, JHEP 10 (2005) 089 [hep-th/0509120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    N. Berkovits, Towards covariant quantization of the supermembrane, JHEP 09 (2002) 051 [hep-th/0201151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    L. Anguelova, P.A. Grassi and P. Vanhove, Covariant one-loop amplitudes in D = 11, Nucl. Phys. B 702 (2004) 269 [hep-th/0408171] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    N.E.J. Bjerrum-Bohr and P. Vanhove, Absence of triangles in maximal supergravity amplitudes, JHEP 10 (2008) 006 [arXiv:0805.3682] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    I. Oda and M. Tonin, Y-formalism in pure spinor quantization of superstrings, Nucl. Phys. B 727 (2005) 176 [hep-th/0505277] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    Y. Aisaka, E.A. Arroyo, N. Berkovits and N. Nekrasov, Pure spinor partition function and the massive superstring spectrum, JHEP 08 (2008) 050 [arXiv:0806.0584] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    P.S. Howe and K.S. Stelle, Supersymmetry counterterms revisited, Phys. Lett. B 554 (2003) 190 [hep-th/0211279] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    Z. Bern, J.S. Rozowsky and B. Yan, Two loop four gluon amplitudes in N = 4 super Yang-Mills, Phys. Lett. B 401 (1997) 273 [hep-ph/9702424] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B 530 (1998) 401 [hep-th/9802162] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, The complete four-loop four-point amplitude in N = 4 super-Yang-Mills theory, Phys. Rev. D 82 (2010) 125040 [arXiv:1008.3327] [INSPIRE].ADSGoogle Scholar
  52. [52]
    Z. Bern, J.J.M. Carrasco, H. Johansson and R. Roiban, The five-loop four-point amplitude of N =4 super-Yang-Mills theory, Phys. Rev. Lett. 109(2012) 241602 [arXiv:1207.6666] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    Z. Bern et al., D = 5 maximally supersymmetric Yang-Mills theory diverges at six loops, Phys. Rev. D 87 (2013) 025018 [arXiv:1210.7709] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M. Cederwall and A. Karlsson, Pure spinor superfields and Born-Infeld theory, JHEP 11 (2011) 134 [arXiv:1109.0809] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Fundamental PhysicsChalmers University of TechnologyGothenburgSweden

Personalised recommendations