Structures on the conformal manifold in six dimensional theories

Open Access
Regular Article - Theoretical Physics

Abstract

The tensors which may be defined on the conformal manifold for six dimensional CFTs with exactly marginal operators are analysed by considering the response to a Weyl rescaling of the metric in the presence of local couplings. It is shown that there are three symmetric two index tensors only one of which satisfies any positivity conditions. The general results are specialised to the six dimensional conformal theory defined by free two-forms and also to the interacting scalar ϕ3 theory at two loops which preserves conformal invariance to this order. All three two index tensor contributions are present.

Keywords

Conformal and W Symmetry Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly marginal deformations and global symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    M. Henningson, A class of six-dimensional conformal field theories, Phys. Rev. Lett. 85 (2000) 5280 [hep-th/0006231] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M.A. Luty, J. Polchinski and R. Rattazzi, The a-theorem and the asymptotics of 4D quantum field theory, JHEP 01 (2013) 152 [arXiv:1204.5221] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].
  6. [6]
    H. Osborn, Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys. B 363 (1991) 486 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    I. Jack and H. Osborn, Constraints on RG flow for four dimensional quantum field theories, Nucl. Phys. B 883 (2014) 425 [arXiv:1312.0428] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    F. Baume, B. Keren-Zur, R. Rattazzi and L. Vitale, The local Callan-Symanzik equation: structure and applications, JHEP 08 (2014) 152 [arXiv:1401.5983] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    I. Jack and H. Osborn, Analogs for the c theorem for four-dimensional renormalizable field theories, Nucl. Phys. B 343 (1990) 647 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.-F. Fortin, B. Grinstein and A. Stergiou, Scale without conformal invariance at three loops, JHEP 08 (2012) 085 [arXiv:1202.4757] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.-F. Fortin, B. Grinstein and A. Stergiou, Limit cycles and conformal invariance, JHEP 01 (2013) 184 [arXiv:1208.3674] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    H. Elvang et al., On renormalization group flows and the a-theorem in 6D, JHEP 10 (2012) 011 [arXiv:1205.3994] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    H. Elvang and T.M. Olson, RG flows in d dimensions, the dilaton effective action and the a-theorem, JHEP 03 (2013) 034 [arXiv:1209.3424] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    F. Baume and B. Keren-Zur, The dilaton Wess-Zumino action in higher dimensions, JHEP 11 (2013) 102 [arXiv:1307.0484] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Corianò, L. Delle Rose, C. Marzo and M. Serino, The dilaton Wess-Zumino action in six dimensions from Weyl gauging: local anomalies and trace relations, Class. Quant. Grav. 31 (2014) 105009 [arXiv:1311.1804] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  16. [16]
    B. Grinstein, A. Stergiou and D. Stone, Consequences of Weyl consistency conditions, JHEP 11 (2013) 195 [arXiv:1308.1096] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    B. Grinstein, D. Stone, A. Stergiou and M. Zhong, Challenge to the a-theorem in six dimensions, Phys. Rev. Lett. 113 (2014) 231602 [arXiv:1406.3626] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    L. Bonora, P. Pasti and M. Bregola, Weyl cocycles, Class. Quant. Grav. 3 (1986) 635 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    F. Bastianelli, S. Frolov and A.A. Tseytlin, Conformal anomaly of (2,0) tensor multiplet in six-dimensions and AdS/CFT correspondence, JHEP 02 (2000) 013 [hep-th/0001041] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Fefferman and C.R. Graham, Conformal invariants, Astérique, Hors Série 95, France (1985).Google Scholar
  23. [23]
    C. Fefferman and C.R. Graham, The ambient metric, arXiv:0710.0919 [INSPIRE].
  24. [24]
    H. Osborn, Local couplings and SL(2, R) invariance for gauge theories at one loop, Phys. Lett. B 561 (2003) 174 [hep-th/0302119] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    M.E. Fisher, Yang-Lee edge singularity and ϕ 3 field theory, Phys. Rev. Lett. 40 (1978) 1610 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    I. Jack, Renormalizability of ϕ 3 theory in six-dimensional curved space-time, Nucl. Phys. B 274 (1986) 139 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Kodaira, Interacting scalar field theory in general curved space-time, Phys. Rev. D 33 (1986) 2882 [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    A.J. McKane, D.J. Wallace and R.K.P. Zia, Models for strong interactions in six epsilon dimensions, Phys. Lett. B 65 (1976) 171 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A.J. Mckane, An SU(3) × SU(3) field theory of strong interactions in six epsilon dimensions, J. Phys. G 3 (1977) 1165 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    O.F. de Alcantara Bonfim, J.E. Kirkham and A.J. McKane, Critical exponents for the percolation problem and the Yang-Lee edge singularity, J. Phys. A 14 (1981) 2391 [INSPIRE].ADSGoogle Scholar
  31. [31]
    A.J. Mckane, Vacuum instability in scalar field theories, Nucl. Phys. B 152 (1979) 166 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, Three loop analysis of the critical O(N ) models in six epsilon dimensions, Phys. Rev. D 91 (2015) 045011 [arXiv:1411.1099] [INSPIRE].ADSGoogle Scholar
  33. [33]
    L.S. Brown and J.C. Collins, Dimensional renormalization of scalar field theory in curved space-time, Annals Phys. 130 (1980) 215 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    D.Z. Freedman, K. Johnson and J.I. Latorre, Differential regularization and renormalization: a new method of calculation in quantum field theory, Nucl. Phys. B 371 (1992) 353 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7 /CFT 6 , Gauss-Bonnet gravity and viscosity bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [INSPIRE].CrossRefMATHGoogle Scholar
  38. [38]
    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].ADSGoogle Scholar
  40. [40]
    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    K. Yonekura, Perturbative c-theorem in d-dimensions, JHEP 04 (2013) 011 [arXiv:1212.3028] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    S. Forte and J.I. Latorre, A proof of the irreversibility of renormalization group flows in four-dimensions, Nucl. Phys. B 535 (1998) 709 [hep-th/9805015] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    T. Parker and S. Rosenberg, Invariants of conformal laplacians, J. Diff. Geom. 25 (1987) 199.MathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    J. Erdmenger, Conformally covariant differential operators: properties and applications, Class. Quant. Grav. 14 (1997) 2061 [hep-th/9704108] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    S.M. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary), SIGMA 4 (2008) 36 [arXiv:0803.4331].MathSciNetMATHGoogle Scholar
  46. [46]
    E.S. Fradkin and A.A. Tseytlin, Asymptotic freedom in extended conformal supergravities, Phys. Lett. B 110 (1982) 117 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    E.S. Fradkin and A.A. Tseytlin, One loop β-function in conformal supergravities, Nucl. Phys. B 203 (1982) 157 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    E.S. Fradkin and A.A. Tseytlin, Conformal anomaly in Weyl theory and anomaly free superconformal theories, Phys. Lett. B 134 (1984) 187 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    R.J. Riegert, A nonlocal action for the trace anomaly, Phys. Lett. B 134 (1984) 56 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    T.P. Branson, Differential operators canonically associated to a conformal structure, Math. Scand. 57 (1985) 293.MathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    A.R. Gover and L.J. Peterson, Conformally invariant powers of the laplacian, Q-curvature and tractor calculus, Commun. Math. Phys. 235 (2003) 339 [math-ph/0201030] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    V. Wünsch, On conformally invariant differential operators, Math. Nach. 129 (1986) 269.MathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    J. Erdmenger and H. Osborn, Conformally covariant differential operators: symmetric tensor fields, Class. Quant. Grav. 15 (1998) 273 [gr-qc/9708040] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    P.B. Gilkey, The spectral geometry of a Riemannian manifold, J. Diff. Geom. 10 (1975) 601 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical PhysicsCambridgeUnited Kingdom
  2. 2.Department of PhysicsYale UniversityNew HavenUnited States

Personalised recommendations