Revisiting non-relativistic limits

Open Access
Regular Article - Theoretical Physics

Abstract

We show that the full spurionic symmetry of Galilean-invariant field theories can be deduced when those theories are the limits of relativistic parents. Under the limit, the non-relativistic daughter couples to Newton-Cartan geometry together with all of the symmetries advocated in previous work, including the recently revived Milne boosts. Our limit is a covariant version of the usual one, where we start with a gapped relativistic theory with a conserved charge, turn on a chemical potential equal to the rest mass of the lightest charged state, and then zoom in to the low energy sector. This procedure gives a simple physical interpretation for the Milne boosts. Our methods even apply when there is a magnetic moment, which is known to modify the non-relativistic symmetry transformations. We focus on two examples. Free scalars are used to demonstrate the basic procedure, whereas hydrodynamics is used in order to exhibit the power of this approach in a fully dynamical setting, correcting several inaccuracies in the existing literature.

Keywords

Space-Time Symmetries Global Symmetries AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D.T. Son and M. Wingate, General coordinate invariance and conformal invariance in nonrelativistic physics: unitary Fermi gas, Annals Phys. 321 (2006) 197 [cond-mat/0509786] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    C. Hoyos and D.T. Son, Hall Viscosity and Electromagnetic Response, Phys. Rev. Lett. 108 (2012) 066805 [arXiv:1109.2651] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    O. Andreev, M. Haack and S. Hofmann, On Nonrelativistic Diffeomorphism Invariance, Phys. Rev. D 89 (2014) 064012 [arXiv:1309.7231] [INSPIRE].ADSGoogle Scholar
  4. [4]
    D.T. Son, Newton-Cartan geometry and the quantum hall effect, arXiv:1306.0638 [INSPIRE].
  5. [5]
    M. Geracie, D.T. Son, C. Wu and S.-F. Wu, Spacetime Symmetries of the Quantum Hall Effect, Phys. Rev. D 91 (2015) 045030 [arXiv:1407.1252] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    C. Hoyos, S. Moroz and D.T. Son, Effective theory of chiral two-dimensional superfluids, Phys. Rev. B 89 (2014) 174507 [arXiv:1305.3925] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Moroz and C. Hoyos, Effective theory of two-dimensional chiral superfluids: gauge duality and Newton-Cartan formulation, Phys. Rev. B 91 (2015) 064508 [arXiv:1408.5911] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Brauner, S. Endlich, A. Monin and R. Penco, General coordinate invariance in quantum many-body systems, Phys. Rev. D 90 (2014) 105016 [arXiv:1407.7730] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. Janiszewski and A. Karch, Non-relativistic holography from Hořava gravity, JHEP 02 (2013) 123 [arXiv:1211.0005] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    K. Jensen, On the coupling of Galilean-invariant field theories to curved spacetime, arXiv:1408.6855 [INSPIRE].
  11. [11]
    C. Duval and H.P. Kunzle, Minimal Gravitational Coupling in the Newtonian Theory and the Covariant Schrödinger Equation, Gen. Rel. Grav. 16 (1984) 333 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Banerjee, A. Mitra and P. Mukherjee, A new formulation of non-relativistic diffeomorphism invariance, Phys. Lett. B 737 (2014) 369 [arXiv:1404.4491] [INSPIRE].ADSMATHGoogle Scholar
  13. [13]
    R. Banerjee, A. Mitra and P. Mukherjee, Localization of the Galilean symmetry and dynamical realization of Newton-Cartan geometry, Class. Quant. Grav. 32 (2015) 045010 [arXiv:1407.3617] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    J. Hartong, E. Kiritsis and N.A. Obers, Schroedinger Invariance from Lifshitz Isometries in Holography and Field Theory, arXiv:1409.1522 [INSPIRE].
  15. [15]
    K. Jensen, Aspects of hot Galilean field theory, arXiv:1411.7024 [INSPIRE].
  16. [16]
    C. Duval, G. Burdet, H.P. Kunzle and M. Perrin, Bargmann Structures and Newton-cartan Theory, Phys. Rev. D 31 (1985) 1841 [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Boundary Stress-Energy Tensor and Newton-Cartan Geometry in Lifshitz Holography, JHEP 01 (2014) 057 [arXiv:1311.6471] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    M. Kaminski and S. Moroz, Nonrelativistic parity-violating hydrodynamics in two spatial dimensions, Phys. Rev. B 89 (2014) 115418 [arXiv:1310.8305] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    O. Andreev, More on nonrelativistic diffeomorphism invariance, Phys. Rev. D 91 (2015) 024035 [arXiv:1408.7031] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  21. [21]
    K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz et al., Parity-violating hydrodynamics in 2+1 dimensions, JHEP 05 (2012) 102 [arXiv:1112.4498] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Pergamon Press (1987).Google Scholar
  23. [23]
    R. Loganayagam, Anomaly Induced Transport in Arbitrary Dimensions, arXiv:1106.0277 [INSPIRE].
  24. [24]
    K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz et al., Towards hydrodynamics without an entropy current, Phys. Rev. Lett. 109 (2012) 101601 [arXiv:1203.3556] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla et al., Constraints on fluid dynamics from equilibrium partition functions, JHEP 09 (2012) 046 [arXiv:1203.3544] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    K. Jensen, Triangle Anomalies, Thermodynamics and Hydrodynamics, Phys. Rev. D 85 (2012) 125017 [arXiv:1203.3599] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Bhattacharyya, Entropy current and equilibrium partition function in fluid dynamics, JHEP 08 (2014) 165 [arXiv:1312.0220] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    C. Germani, A. Kehagias and K. Sfetsos, Relativistic quantum gravity at a Lifshitz point, JHEP 09 (2009) 060 [arXiv:0906.1201] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    D. Blas, O. Pujolàs and S. Sibiryakov, On the extra mode and inconsistency of Hořava gravity, JHEP 10 (2009) 029 [arXiv:0906.3046] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S. Janiszewski and A. Karch, String theory embeddings of nonrelativistic field theories and their holographic Hořava gravity duals, Phys. Rev. Lett. 110 (2013) 081601 [arXiv:1211.0010] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.C.N. Yang Institute for Theoretical PhysicsSUNY Stony BrookStony BrookUnited States
  2. 2.Department of PhysicsUniversity of WashingtonSeattleUnited States

Personalised recommendations