‘Exotic vector-like pair’ of color-triplet scalars

  • Andrea Addazi
Open Access
Regular Article - Theoretical Physics


We propose a minimal extension of Standard Model, generating a Majorana mass for neutron, connected with a mechanism of Post-Sphaleron Baryogenesis. We consider an ‘exotic vector-like pair’ of color-triplet scalars, an extra Majorana fermion ψ, and a scalar field ϕ, giving mass to ψ. The vector-like pair is defined ‘exotic’ because of a peculiar mass term of the color-triplet scalars, violating Baryon number as ΔB = 1. Such a mass term could be generated by exotic instantons in a class of string-inspired completions of the Standard Model: open (un-)oriented strings attached between D-brane stacks and Euclidean D-branes. A Post-Sphaleron Baryogenesis is realized through ϕ-decays into six quarks (antiquarks), or through ψ-decays into three quarks (antiquarks). This model suggests some intriguing B-violating signatures, testable in the next future, in Neutron-Antineutron physics and LHC. We also discuss limits from FCNC. Sterile fermion can also be light as 1 − 100GeV. In this case, the sterile fermion could be (meta)-stable and n\( \overline{n} \) oscillation can be indirectly generated by two nψ, ψ\( \overline{n} \) oscillations, without needing of an effective Majorana mass for neutron. Majorana fermion ψ can be a good candidate for WIMP-like dark matter.


Supersymmetry Phenomenology Strings and branes phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E. Majorana, Theory of the symmetry of electrons and positrons, Nuovo Cim. 14 (1937) 171 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    V.A. Kuzmin, CP-noninvairiance and baryon asymmetry of the universe, JETP Lett. 12 (1970) 228.ADSGoogle Scholar
  3. [3]
    S.L. Glashow, Overview, in Proceedings of Neutrino 79, International conference on neutrinos, weak interactions and cosmology, 1 (1979), pg. 518 [INSPIRE].
  4. [4]
    R.N. Mohapatra and R.E. Marshak, Local B-L symmetry of electroweak interactions, Majorana neutrinos and neutron oscillations, Phys. Rev. Lett. 44 (1980) 1316 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Baldo-Ceolin et al., A new experimental limit on neutron-anti-neutron oscillations, Z. Phys. C 63 (1994) 409 [INSPIRE].ADSGoogle Scholar
  6. [6]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].Google Scholar
  7. [7]
    I. Phillips et al., Neutron-antineutron oscillations: theoretical status and experimental prospects, submitted to Phys. Rept. (2014) [arXiv:1410.1100] [INSPIRE].
  8. [8]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P. Ramond, The family group in grand unified theories, hep-ph/9809459 [INSPIRE].
  10. [10]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  11. [11]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  16. [16]
    R.N. Mohapatra and P. Pal, Massive neutrinos in physics and astrophysics, World Scientific, Singapore (1991), pg. 127.CrossRefGoogle Scholar
  17. [17]
    E. Ma and U. Sarkar, Neutrino masses and leptogenesis with heavy Higgs triplets, Phys. Rev. Lett. 80 (1998) 5716 [hep-ph/9802445] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S.M. Barr, A different seesaw formula for neutrino masses, Phys. Rev. Lett. 92 (2004) 101601 [hep-ph/0309152] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C.H. Albright and S.M. Barr, Leptogenesis in the type-III seesaw mechanism, Phys. Rev. D 69 (2004) 073010 [hep-ph/0312224] [INSPIRE].ADSGoogle Scholar
  20. [20]
    K.S. Babu, P.S. Bhupal Dev, E.C. F.S. Fortes and R.N. Mohapatra, Expectations for neutron-antineutron oscillation time from TeV scale baryogenesis, AIP Conf. Proc. 1534 (2012) 211 [INSPIRE].ADSGoogle Scholar
  21. [21]
    K.S. Babu and R.N. Mohapatra, Coupling unification, GUT-scale baryogenesis and neutron-antineutron oscillation in SO(10), Phys. Lett. B 715 (2012) 328 [arXiv:1206.5701] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    K.S. Babu, P.S. Bhupal Dev, E.C. F.S. Fortes and R.N. Mohapatra, Post-sphaleron baryogenesis and an upper limit on the neutron-antineutron oscillation time, Phys. Rev. D 87 (2013) 115019 [arXiv:1303.6918] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Patra and P. Pritimita, Post-sphaleron baryogenesis and \( n-\overline{n} \) oscillation in non-SUSY SO(10) GUT with gauge coupling unification and proton decay, Eur. Phys. J. C 74 (2014) 3078 [arXiv:1405.6836] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.M. Arnold, B. Fornal and M.B. Wise, Simplified models with baryon number violation but no proton decay, Phys. Rev. D 87 (2013) 075004 [arXiv:1212.4556] [INSPIRE].ADSGoogle Scholar
  25. [25]
    G. Dvali, Three-form gauging of axion symmetries and gravity, hep-th/0507215 [INSPIRE].
  26. [26]
    C. Cheung and K. Ishiwata, Baryogenesis with higher dimension operators, Phys. Rev. D 88 (2013) 017901 [arXiv:1304.0468] [INSPIRE].ADSGoogle Scholar
  27. [27]
    P. Fileviez Perez, New paradigm for baryon and lepton number violation, arXiv:1501.01886 [INSPIRE].
  28. [28]
    A. Addazi and M. Bianchi, Neutron Majorana mass from exotic instantons, JHEP 12 (2014) 089 [arXiv:1407.2897] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Addazi and M. Bianchi, Un-oriented quiver theories for Majorana neutrons, arXiv:1502.01531 [INSPIRE].
  30. [30]
    S. Rao and R. Shrock, nn transition operators and their matrix elements in the MIT bag model, Phys. Lett. B 116 (1982) 238 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M.I. Buchoff, C. Schroeder and J. Wasem, Neutron-antineutron oscillations on the lattice, PoS(LATTICE 2012)128 [arXiv:1207.3832] [INSPIRE].
  32. [32]
    P.T. Winslow and J.N. Ng, Neutron-antineutron oscillations in a warped extra dimension, Phys. Rev. D 81 (2010) 106010 [arXiv:1003.1424] [INSPIRE].ADSGoogle Scholar
  33. [33]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    R. Sekhar Chivukula, E.H. Simmons and N. Vignaroli, Distinguishing dijet resonances at the LHC, Phys. Rev. D 91 (2015) 055019 [arXiv:1412.3094] [INSPIRE].ADSGoogle Scholar
  35. [35]
    A.P. Serebrov et al., Experimental search for neutron: mirror neutron oscillations using storage of ultracold neutrons, Phys. Lett. B 663 (2008) 181 [arXiv:0706.3600] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    I. Altarev et al., Neutron to mirror-neutron oscillations in the presence of mirror magnetic fields, Phys. Rev. D 80 (2009) 032003 [arXiv:0905.4208] [INSPIRE].ADSGoogle Scholar
  37. [37]
    K. Bodek et al., Additional results from the first dedicated search for neutronmirror neutron oscillations, Nucl. Instrum. Meth. A 611 (2009) 141 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  39. [39]
    Z. Berezhiani and L. Bento, Neutron-mirror neutron oscillations: how fast might they be?, Phys. Rev. Lett. 96 (2006) 081801 [hep-ph/0507031] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    Z. Berezhiani and L. Bento, Fast neutron: mirror neutron oscillation and ultra high energy cosmic rays, Phys. Lett. B 635 (2006) 253 [hep-ph/0602227] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Z. Berezhiani, More about neutron-mirror neutron oscillation, Eur. Phys. J. C 64 (2009) 421 [arXiv:0804.2088] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Addazi, Neutron-Antineutron oscillations as a test of a new interaction, to appear in Proceedings of IFAE 2014, Italy (2014).Google Scholar
  43. [43]
    A. Addazi, Z. Berezhiani and Y. Kamyshkov, Neutron-antineutron oscillations as a test of a new fundamental interaction, in preparation.Google Scholar
  44. [44]
    A. Bottino, F. Donato, N. Fornengo and S. Scopel, Indirect signals from light neutralinos in supersymmetric models without gaugino mass unification, Phys. Rev. D 70 (2004) 015005 [hep-ph/0401186] [INSPIRE].ADSGoogle Scholar
  45. [45]
    N. Fornengo, S. Scopel and A. Bottino, Discussing direct search of dark matter particles in the minimal supersymmetric extension of the standard model with light neutralinos, Phys. Rev. D 83 (2011) 015001 [arXiv:1011.4743] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A.D. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991) 392] [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].
  47. [47]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s} \) = 8 TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].ADSGoogle Scholar
  48. [48]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, JHEP 06 (2014) 055 [arXiv:1402.4770] [INSPIRE].ADSGoogle Scholar
  49. [49]
    ATLAS collaboration, Exotics public results webpage,
  50. [50]
    K. Kowalska, Phenomenology of SUSY with general flavour violation, JHEP 09 (2014) 139 [arXiv:1406.0710] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Berasaluce-Gonzalez, L.E. Ibáñez, P. Soler and A.M. Uranga, Discrete gauge symmetries in D-brane models, JHEP 12 (2011) 113 [arXiv:1106.4169] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    P. Anastasopoulos, M. Cvetič, R. Richter and P.K.S. Vaudrevange, String constraints on discrete symmetries in MSSM type II quivers, JHEP 03 (2013) 011 [arXiv:1211.1017] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua: the seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113 [hep-th/0609191] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    L.E. Ibáñez and A.M. Uranga, Neutrino Majorana masses from string theory instanton effects, JHEP 03 (2007) 052 [hep-th/0609213] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    L.E. Ibáñez, A.N. Schellekens and A.M. Uranga, Instanton induced neutrino Majorana masses in CFT orientifolds with MSSM-like spectra, JHEP 06 (2007) 011 [arXiv:0704.1079] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    S. Antusch, L.E. Ibáñez and T. Macri, Neutrino masses and mixings from string theory instantons, JHEP 09 (2007) 087 [arXiv:0706.2132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    A. Addazi and G. Esposito, Nonlocal quantum field theory without acausality and nonunitarity at quantum level: is SUSY the key?, arXiv:1502.01471 [INSPIRE].
  58. [58]
    B. Körs and P. Nath, A Stueckelberg extension of the standard model, Phys. Lett. B 586 (2004) 366 [hep-ph/0402047] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    B. Körs and P. Nath, Aspects of the Stueckelberg extension, JHEP 07 (2005) 069 [hep-ph/0503208] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  60. [60]
    J. De Rydt, J. Rosseel, T.T. Schmidt, A. Van Proeyen and M. Zagermann, Symplectic structure of N = 1 supergravity with anomalies and Chern-Simons terms, Class. Quant. Grav. 24 (2007) 5201 [arXiv:0705.4216] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    D. Feldman, Z. Liu and P. Nath, The Stueckelberg Z extension with kinetic mixing and milli-charged dark matter from the hidden sector, Phys. Rev. D 75 (2007) 115001 [hep-ph/0702123] [INSPIRE].ADSGoogle Scholar
  62. [62]
    N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    V.A. Rubakov, Lorentz-violating graviton masses: getting around ghosts, low strong coupling scale and VDVZ discontinuity, hep-th/0407104 [INSPIRE].
  64. [64]
    S.L. Dubovsky, Phases of massive gravity, JHEP 10 (2004) 076 [hep-th/0409124] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    A. Addazi and S. Capozziello, External stability for spherically symmetric solutions in Lorentz breaking massive gravity, arXiv:1407.4840 [INSPIRE].
  66. [66]
    A. Addazi and M. Bianchi, Neutron Majorana mass from exotic instantons in a Pati-Salam model, arXiv:1502.08041 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di L’AquilaCoppitoItaly
  2. 2.LNGS, Laboratori Nazionali del Gran SassoAssergiItaly

Personalised recommendations