Dark matter in split SUSY with intermediate higgses

  • Kingman Cheung
  • Ran Huo
  • Jae Sik Lee
  • Yue-Lin Sming Tsai
Open Access
Regular Article - Theoretical Physics


The searches for heavy Higgs bosons and supersymmetric (SUSY) particles at the LHC have left the minimal supersymmetric standard model (MSSM) with an unusual spectrum of SUSY particles, namely, all squarks are beyond a few TeV while the Higgs bosons other than the one observed at 125 GeV could be relatively light. In light of this, we study a scenario characterized by two scales: the SUSY breaking scale or the squark-mass scale (M S ) and the heavy Higgs-boson mass scale (MA). We perform a survey of the MSSM parameter space with M S ≲ 1010 GeV and M A ≲ 104 GeV such that the lightest Higgs boson mass is within the range of the observed Higgs boson as well as satisfying a number of constraints. The set of constraints include the invisible decay width of the Z boson and that of the Higgs boson, the chargino-mass limit, dark matter relic abundance from Planck, the spin-independent cross section of direct detection by LUX, and gamma-ray flux from dwarf spheroidal galaxies and gamma-ray line constraints measured by Fermi LAT. Survived regions of parameter space feature the dark matter with correct relic abundance, which is achieved through either coannihilation with charginos, A/H funnels, or both. We show that future measurements, e.g., XENON1T and LZ, of spin-independent cross sections can further squeeze the parameter space.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. D’Onofrio, ATLAS searches for supersymmetric particles at the LHC, talk given at 22nd International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY2014), July 21–26, Manchester, U.K. (2014).Google Scholar
  2. [2]
    H. Flaecher, CMS searches for supersymmetric particles at the LHC, talk given at 22nd International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY2014), July 21–26, Manchester, U.K. (2014).Google Scholar
  3. [3]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T. Moroi and M. Nagai, Probing supersymmetric model with heavy sfermions using leptonic flavor and CP-violations, Phys. Lett. B 723 (2013) 107 [arXiv:1303.0668] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. McKeen, M. Pospelov and A. Ritz, Electric dipole moment signatures of PeV-scale superpartners, Phys. Rev. D 87 (2013) 113002 [arXiv:1303.1172] [INSPIRE].ADSGoogle Scholar
  6. [6]
    R. Sato, S. Shirai and K. Tobioka, Flavor of gluino decay in high-scale supersymmetry, JHEP 10 (2013) 157 [arXiv:1307.7144] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    W. Altmannshofer, R. Harnik and J. Zupan, Low energy probes of PeV scale sfermions, JHEP 11 (2013) 202 [arXiv:1308.3653] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K. Fuyuto, J. Hisano, N. Nagata and K. Tsumura, QCD corrections to quark (chromo)electric dipole moments in high-scale supersymmetry, JHEP 12 (2013) 010 [arXiv:1308.6493] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Weinberg, Cosmological constraints on the scale of supersymmetry breaking, Phys. Rev. Lett. 48 (1982) 1303 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang nucleosynthesis and gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].ADSGoogle Scholar
  11. [11]
    L.J. Hall and Y. Nomura, Spread supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Masiero, S. Profumo and P. Ullio, Neutralino dark matter detection in split supersymmetry scenarios, Nucl. Phys. B 712 (2005) 86 [hep-ph/0412058] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Cheung, C.-W. Chiang and J. Song, A minimal supersymmetric scenario with only μ at the weak scale, JHEP 04 (2006) 047 [hep-ph/0512192] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    F. Wang, W. Wang and J.M. Yang, Gravitino dark matter from gluino late decay in split supersymmetry, Phys. Rev. D 72 (2005) 077701 [hep-ph/0507172] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Provenza, M. Quirós and P. Ullio, Dark matter in split extended supersymmetry, JCAP 12 (2006) 007 [hep-ph/0609059] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    N. Bernal, Dark matter direct detection in the MSSM with heavy scalars, JCAP 08 (2009) 022 [arXiv:0905.4239] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. Elor, H.-S. Goh, L.J. Hall, P. Kumar and Y. Nomura, Environmentally selected WIMP dark matter with high-scale supersymmetry breaking, Phys. Rev. D 81 (2010) 095003 [arXiv:0912.3942] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Hisano, K. Ishiwata and N. Nagata, A complete calculation for direct detection of wino dark matter, Phys. Lett. B 690 (2010) 311 [arXiv:1004.4090] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Ibe and T.T. Yanagida, The lightest Higgs boson mass in pure gravity mediation model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Ibe, S. Matsumoto and T.T. Yanagida, Pure gravity mediation with m 3/2 = 10100 TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].ADSGoogle Scholar
  22. [22]
    L.J. Hall, Y. Nomura and S. Shirai, Spread supersymmetry with wino LSP: gluino and dark matter signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Hisano, K. Ishiwata and N. Nagata, Direct search of dark matter in high-scale supersymmetry, Phys. Rev. D 87 (2013) 035020 [arXiv:1210.5985] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Ibe, S. Matsumoto, S. Shirai and T.T. Yanagida, AMS-02 positrons from decaying wino in the pure gravity mediation model, JHEP 07 (2013) 063 [arXiv:1305.0084] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Ibe, S. Matsumoto, S. Shirai and T.T. Yanagida, Mass of decaying wino from AMS-02 2014, Phys. Lett. B 741 (2015) 134 [arXiv:1409.6920] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    N. Nagata and S. Shirai, Higgsino dark matter in high-scale supersymmetry, JHEP 01 (2015) 029 [arXiv:1410.4549] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    ATLAS collaboration, Search for Neutral MSSM Higgs bosons in \( \sqrt{s}=7 \) TeV pp collisions at ATLAS, ATLAS-CONF-2012-094 (2012).
  28. [28]
    CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of τ leptons in pp collisions, JHEP 10 (2014) 160 [arXiv:1408.3316] [INSPIRE].Google Scholar
  29. [29]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].ADSGoogle Scholar
  30. [30]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  31. [31]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  32. [32]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [hep-ph/0406088] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  36. [36]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].Google Scholar
  37. [37]
    K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs precision (higgcision) era begins, JHEP 05 (2013) 134 [arXiv:1302.3794] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs precision analysis updates 2014, Phys. Rev. D 90 (2014) 095009 [arXiv:1407.8236] [INSPIRE].ADSGoogle Scholar
  39. [39]
    LEP2 SUSY working group,
  40. [40]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    S. Matsumoto, S. Mukhopadhyay and Y.-L.S. Tsai, Singlet Majorana fermion dark matter: a comprehensive analysis in effective field theory, JHEP 10 (2014) 155 [arXiv:1407.1859] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    Y.-L.S. Tsai, Q. Yuan and X. Huang, A generic method to constrain the dark matter model parameters from Fermi observations of dwarf spheroids, JCAP 03 (2013) 018 [arXiv:1212.3990] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    Fermi-LAT collaboration, M. Ackermann et al., Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope, Phys. Rev. D 89 (2014) 042001 [arXiv:1310.0828] [INSPIRE].ADSGoogle Scholar
  45. [45]
    Fermi-LAT collaboration, M. Ackermann et al., Search for gamma-ray spectral lines with the Fermi large area telescope and dark matter implications, Phys. Rev. D 88 (2013) 082002 [arXiv:1305.5597] [INSPIRE].Google Scholar
  46. [46]
    F. Frensch, BSM Higgs searches at CMS, talk given at 22nd International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY2014), July 21–26, Manchester, U.K. (2014).Google Scholar
  47. [47]
    M. Zur Nedden, BSM Higgs searches at ATLAS, talk given at 22nd International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY2014), July 21–26, Manchester, U.K. (2014).Google Scholar
  48. [48]
    CMS collaboration, Search for electroweak production of charginos and neutralinos using leptonic final states in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 11 (2012) 147 [arXiv:1209.6620] [INSPIRE].ADSGoogle Scholar
  49. [49]
    C. Han, Probing light bino and higgsinos at the LHC, arXiv:1409.7000 [INSPIRE].
  50. [50]
    K. Choi, K.S. Jeong and K.-i. Okumura, Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models, JHEP 09 (2005) 039 [hep-ph/0504037] [INSPIRE].
  51. [51]
    J.P. Conlon and F. Quevedo, Gaugino and scalar masses in the landscape, JHEP 06 (2006) 029 [hep-th/0605141] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    J.P. Conlon, S.S. AbdusSalam, F. Quevedo and K. Suruliz, Soft SUSY breaking terms for chiral matter in IIB string compactifications, JHEP 01 (2007) 032 [hep-th/0610129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    B.S. Acharya, K. Bobkov, G.L. Kane, P. Kumar and J. Shao, Explaining the electroweak scale and stabilizing moduli in M-theory, Phys. Rev. D 76 (2007) 126010 [hep-th/0701034] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao and P. Kumar, The G 2 -MSSM: an M-theory motivated model of particle physics, Phys. Rev. D 78 (2008) 065038 [arXiv:0801.0478] [INSPIRE].ADSGoogle Scholar
  55. [55]
    J. Fan and M. Reece, In wino veritas? Indirect searches shed light on neutralino dark matter, JHEP 10 (2013) 124 [arXiv:1307.4400] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    N. Blinov, J. Kozaczuk, A. Menon and D.E. Morrissey, Confronting the moduli-induced lightest-superpartner problem, Phys. Rev. D 91 (2015) 035026 [arXiv:1409.1222] [INSPIRE].ADSGoogle Scholar
  57. [57]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. Mohanty, S. Rao and D.P. Roy, Relic density and PAMELA events in a heavy wino dark matter model with Sommerfeld effect, Int. J. Mod. Phys. A 27 (2012) 1250025 [arXiv:1009.5058] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  59. [59]
    R. Catena and P. Ullio, The local dark matter phase-space density and impact on WIMP direct detection, JCAP 05 (2012) 005 [arXiv:1111.3556] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G.D. Martinez, J.S. Bullock, M. Kaplinghat, L.E. Strigari and R. Trotta, Indirect dark matter detection from dwarf satellites: joint expectations from astrophysics and supersymmetry, JCAP 06 (2009) 014 [arXiv:0902.4715] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    N. Bernal, A. Djouadi and P. Slavich, The MSSM with heavy scalars, JHEP 07 (2007) 016 [arXiv:0705.1496] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    P. Gondolo et al., DarkSUSY: computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    ATLAS collaboration, Measurement of the Higgs boson mass from the Hγγ and HZZ * → 4ℓ channels with the ATLAS detector using 25 fb −1 of pp collision data, Phys. Rev. D 90 (2014) 052004 [arXiv:1406.3827] [INSPIRE].ADSGoogle Scholar
  65. [65]
    CMS collaboration, Observation of the diphoton decay of the Higgs boson and measurement of its properties, Eur. Phys. J. C 74 (2014) 3076 [arXiv:1407.0558] [INSPIRE].Google Scholar
  66. [66]
    L. Álvarez-Ruso, T. Ledwig, J. Martin Camalich and M.J. Vicente-Vacas, Nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD data, Phys. Rev. D 88 (2013) 054507 [arXiv:1304.0483] [INSPIRE].ADSGoogle Scholar
  67. [67]
    P. Junnarkar and A. Walker-Loud, Scalar strange content of the nucleon from lattice QCD, Phys. Rev. D 87 (2013) 114510 [arXiv:1301.1114] [INSPIRE].ADSGoogle Scholar
  68. [68]
    ATLAS collaboration, Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 112015 [arXiv:1408.7084] [INSPIRE].ADSGoogle Scholar
  69. [69]
    A. David, Physcis of the Brout-Englert-Higgs boson in CMS, talk given at 37th International Conference on High Energy Physics (ICHEP2014), July, 2–9, Valencia, Spain (2014).Google Scholar
  70. [70]
    S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    D.C. Malling et al., After LUX: the LZ program, arXiv:1110.0103 [INSPIRE].
  72. [72]
    H.E. Haber and R. Hempfling, The renormalization group improved Higgs sector of the minimal supersymmetric model, Phys. Rev. D 48 (1993) 4280 [hep-ph/9307201] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Kingman Cheung
    • 1
    • 2
    • 5
  • Ran Huo
    • 3
  • Jae Sik Lee
    • 4
  • Yue-Lin Sming Tsai
    • 3
  1. 1.Department of PhysicsNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Division of Quantum Phases and Devices, School of PhysicsKonkuk UniversitySeoulSouth Korea
  3. 3.Kavli IPMU (WPI)The University of TokyoKashiwaJapan
  4. 4.Department of PhysicsChonnam National UniversityGwangjuSouth Korea
  5. 5.Physics DivisionNational Center for Theoretical SciencesHsinchuTaiwan

Personalised recommendations