The dark side of electroweak naturalness beyond the MSSM

  • Geneviève Bélanger
  • Cédric Delaunay
  • Andreas Goudelis
Open Access
Regular Article - Theoretical Physics


Weak scale supersymmetry (SUSY) remains a prime explanation for the radiative stability of the Higgs field. A natural account of the Higgs boson mass, however, strongly favors extensions of the Minimal Supersymmetric Standard Model (MSSM). A plausible option is to introduce a new supersymmetric sector coupled to the MSSM Higgs fields, whose associated states resolve the little hierarchy problem between the third generation soft parameters and the weak scale. SUSY also accomodates a weakly interacting cold dark matter (DM) candidate in the form of a stable neutralino. In minimal realizations, the thus-far null results of direct DM searches, along with the DM relic abundance constraint, introduce a level of fine-tuning as severe as the one due to the SUSY little hierarchy problem. We analyse the generic implications of new SUSY sectors parametrically heavier than the minimal SUSY spectrum, devised to increase the Higgs boson mass, on this “little neutralino DM problem”. We focus on the SUSY operator of smallest scaling dimension in an effective field theory description, which modifies the Higgs and DM sectors in a correlated manner. Within this framework, we show that recent null results from the LUX experiment imply a tree-level fine-tuning for gaugino DM which is parametrically at least a few times larger than that of the MSSM. Higgsino DM whose relic abundance is generated through a thermal freeze-out mechanism remains also severely fine-tuned, unless the DM lies below the weak boson pair-production threshold. As in the MSSM, well-tempered gaugino-Higgsino DM is strongly disfavored by present direct detection results.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    C. Muñoz, Dark matter detection in the light of recent experimental results, Int. J. Mod. Phys. A 19 (2004) 3093 [hep-ph/0309346] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M.W. Goodman and E. Witten, Detectability of certain dark matter candidates, Phys. Rev. D 31 (1985) 3059 [INSPIRE].ADSGoogle Scholar
  5. [5]
    H. Baer, E.-K. Park and X. Tata, Collider, direct and indirect detection of supersymmetric dark matter, New J. Phys. 11 (2009) 105024 [arXiv:0903.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [arXiv:1104.3088] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    CDMS collaboration, R. Agnese et al., Silicon detector dark matter results from the final exposure of CDMS II, Phys. Rev. Lett. 111 (2013) 251301 [arXiv:1304.4279] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    CRESST-II collaboration, G. Angloher et al., Results on low mass WIMPs using an upgraded CRESST-II detector, Eur. Phys. J. C 74 (2014) 3184 [arXiv:1407.3146] [INSPIRE].Google Scholar
  11. [11]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  12. [12]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  13. [13]
    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Maniatis, The next-to-minimal supersymmetric extension of the standard model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    P. Batra, A. Delgado, D.E. Kaplan and T.M.P. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    R. Auzzi, A. Giveon, S.B. Gudnason and T. Shacham, A light stop with flavor in natural SUSY, JHEP 01 (2013) 169 [arXiv:1208.6263] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R. Huo, G. Lee, A.M. Thalapillil and C.E.M. Wagner, SU(2) ⊗ SU(2) gauge extensions of the MSSM revisited, Phys. Rev. D 87 (2013) 055011 [arXiv:1212.0560] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Bharucha, A. Goudelis and M. McGarrie, En-gauging naturalness, Eur. Phys. J. C 74 (2014) 2858 [arXiv:1310.4500] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Dimopoulos, K. Howe and J. March-Russell, Maximally natural supersymmetry, Phys. Rev. Lett. 113 (2014) 111802 [arXiv:1404.7554] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    U. Ellwanger, G. Espitalier-Noel and C. Hugonie, Naturalness and fine tuning in the NMSSM: implications of early LHC results, JHEP 09 (2011) 105 [arXiv:1107.2472] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G.G. Ross, K. Schmidt-Hoberg and F. Staub, The generalised NMSSM at one loop: fine tuning and phenomenology, JHEP 08 (2012) 074 [arXiv:1205.1509] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M.Y. Binjonaid and S.F. King, Naturalness of scale-invariant NMSSMs with and without extra matter, Phys. Rev. D 90 (2014) 055020 [arXiv:1403.2088] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Kaminska, G.G. Ross, K. Schmidt-Hoberg and F. Staub, A precision study of the fine tuning in the DiracNMSSM, JHEP 06 (2014) 153 [arXiv:1401.1816] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P. Athron, M. Binjonaid and S.F. King, Fine tuning in the constrained exceptional supersymmetric standard model, Phys. Rev. D 87 (2013) 115023 [arXiv:1302.5291] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M. McGarrie, G. Moortgat-Pick and S. Porto, Confronting Higgs couplings from D-term extensions and Natural SUSY at the LHC and ILC, Eur. Phys. J. C 75 (2015) 150 [arXiv:1411.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Strumia, Bounds on Kaluza-Klein excitations of the SM vector bosons from electroweak tests, Phys. Lett. B 466 (1999) 107 [hep-ph/9906266] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.A. Casas, J.R. Espinosa and I. Hidalgo, The MSSM fine tuning problem: a Way out, JHEP 01 (2004) 008 [hep-ph/0310137] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Perelstein and B. Shakya, Fine-tuning implications of direct dark matter searches in the MSSM, JHEP 10 (2011) 142 [arXiv:1107.5048] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    M. Perelstein and B. Shakya, XENON100 implications for naturalness in the MSSM, NMSSM and λ-supersymmetry model, Phys. Rev. D 88 (2013) 075003 [arXiv:1208.0833] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Berg, J. Edsjo, P. Gondolo, E. Lundstrom and S. Sjors, Neutralino dark matter in BMSSM effective theory, JCAP 08 (2009) 035 [arXiv:0906.0583] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    N. Bernal, K. Blum, Y. Nir and M. Losada, BMSSM implications for cosmology, JHEP 08 (2009) 053 [arXiv:0906.4696] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    N. Bernal and A. Goudelis, Dark matter detection in the BMSSM, JCAP 03 (2010) 007 [arXiv:0912.3905] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Dine, L. Randall and S.D. Thomas, Baryogenesis from flat directions of the supersymmetric standard model, Nucl. Phys. B 458 (1996) 291 [hep-ph/9507453] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    T. Gherghetta, C.F. Kolda and S.P. Martin, Flat directions in the scalar potential of the supersymmetric standard model, Nucl. Phys. B 468 (1996) 37 [hep-ph/9510370] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, MSSM Higgs with dimension-six operators, Nucl. Phys. B 831 (2010) 133 [arXiv:0910.1100] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    F. Boudjema and G. Drieu La Rochelle, SUSY Higgs searches: beyond the MSSM, Phys. Rev. D 85 (2012) 035011 [arXiv:1112.1434] [INSPIRE].ADSGoogle Scholar
  40. [40]
    F. Boudjema and G.D. La Rochelle, Beyond the MSSM Higgs bosons at 125 GeV, Phys. Rev. D 86 (2012) 015018 [arXiv:1203.3141] [INSPIRE].ADSGoogle Scholar
  41. [41]
    F. Boudjema and G.D. La Rochelle, Supersymmetric Higgses beyond the MSSM: an update with flavour and dark matter constraints, Phys. Rev. D 86 (2012) 115007 [arXiv:1208.1952] [INSPIRE].ADSGoogle Scholar
  42. [42]
    Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos term in field theory and supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    S. Dimopoulos and S.D. Thomas, Dynamical relaxation of the supersymmetric CP-violating phases, Nucl. Phys. B 465 (1996) 23 [hep-ph/9510220] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K. Blum, C. Delaunay, M. Losada, Y. Nir and S. Tulin, CP violation beyond the MSSM: baryogenesis and electric dipole moments, JHEP 05 (2010) 101 [arXiv:1003.2447] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  45. [45]
    P. Batra and E. Ponton, Supersymmetric electroweak symmetry breaking, Phys. Rev. D 79 (2009) 035001 [arXiv:0809.3453] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Arvanitaki, M. Baryakhtar, X. Huang, K. van Tilburg and G. Villadoro, The last vestiges of naturalness, JHEP 03 (2014) 022 [arXiv:1309.3568] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    ATLAS collaboration, Search for top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector, JHEP 11 (2014) 118 [arXiv:1407.0583] [INSPIRE].ADSGoogle Scholar
  48. [48]
    CMS collaboration, Search for top-squark pair production in the single-lepton final state in pp collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J. Fan, M. Reece and J.T. Ruderman, Stealth supersymmetry, JHEP 11 (2011) 012 [arXiv:1105.5135] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Czakon, A. Mitov, M. Papucci, J.T. Ruderman and A. Weiler, Closing the stop gap, Phys. Rev. Lett. 113 (2014) 201803 [arXiv:1407.1043] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Z. Han, A. Katz, D. Krohn and M. Reece, (Light) stop signs, JHEP 08 (2012) 083 [arXiv:1205.5808] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    K. Blum, C. Delaunay and Y. Hochberg, Vacuum (meta)stability beyond the MSSM, Phys. Rev. D 80 (2009) 075004 [arXiv:0905.1701] [INSPIRE].ADSGoogle Scholar
  53. [53]
    R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  56. [56]
    M. Drees and M.M. Nojiri, The neutralino relic density in minimal N = 1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [INSPIRE].ADSGoogle Scholar
  57. [57]
    L. Roszkowski, R. Ruiz de Austri and T. Nihei, New cosmological and experimentalconstraints on the CMSSM, JHEP 08 (2001) 024 [hep-ph/0106334] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Djouadi, M. Drees and J.-L. Kneur, Neutralino dark matter in mSUGRA: reopening the light Higgs pole window, Phys. Lett. B 624 (2005) 60 [hep-ph/0504090] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J.R. Ellis, T. Falk and K.A. Olive, Neutralino-stau coannihilation and the cosmological upper limit on the mass of the lightest supersymmetric particle, Phys. Lett. B 444 (1998) 367 [hep-ph/9810360] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    J.R. Ellis, T. Falk, K.A. Olive and M. Srednicki, Calculations of neutralino-stau coannihilation channels and the cosmologically relevant region of MSSM parameter space, Astropart. Phys. 13 (2000) 181 [hep-ph/9905481] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    C. Pallis, bτ unification with gaugino and sfermion mass nonuniversality, Nucl. Phys. B 678 (2004) 398 [hep-ph/0304047] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Profumo, Neutralino dark matter, bτ Yukawa unification and nonuniversal sfermion masses, Phys. Rev. D 68 (2003) 015006 [hep-ph/0304071] [INSPIRE].ADSGoogle Scholar
  63. [63]
    A. Arbey, M. Battaglia and F. Mahmoudi, Supersymmetry with light dark matter confronting the recent CDMS and LHC results, Phys. Rev. D 88 (2013) 095001 [arXiv:1308.2153] [INSPIRE].ADSGoogle Scholar
  64. [64]
    G. Bélanger et al., LHC constraints on light neutralino dark matter in the MSSM, Phys. Lett. B 726 (2013) 773 [arXiv:1308.3735] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    L. Calibbi, J.M. Lindert, T. Ota and Y. Takanishi, LHC tests of light neutralino dark matter without light sfermions, JHEP 11 (2014) 106 [arXiv:1410.5730] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
  67. [67]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: a program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. Semenov, LanHEP: a package for the automatic generation of Feynman rules in field theory. Version 3.0, Comput. Phys. Commun. 180 (2009) 431 [arXiv:0805.0555] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  69. [69]
    A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs and generation of matrix elements for other packages, hep-ph/0412191 [INSPIRE].
  70. [70]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  71. [71]
    XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, Springer Proc. Phys. C12-02-22 (2013) 93 [arXiv:1206.6288] [INSPIRE].Google Scholar
  72. [72]
    D.C. Malling et al., After LUX: the LZ program, arXiv:1110.0103 [INSPIRE].
  73. [73]
    J. Bovy and S. Tremaine, On the local dark matter density, Astrophys. J. 756 (2012) 89 [arXiv:1205.4033] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    B. Herrmann, M. Klasen and K. Kovarik, SUSY-QCD effects on neutralino dark matter annihilation beyond scalar or gaugino mass unification, Phys. Rev. D 80 (2009) 085025 [arXiv:0907.0030] [INSPIRE].ADSGoogle Scholar
  75. [75]
    N. Baro, F. Boudjema, G. Chalons and S. Hao, Relic density at one-loop with gauge boson pair production, Phys. Rev. D 81 (2010) 015005 [arXiv:0910.3293] [INSPIRE].ADSGoogle Scholar
  76. [76]
    F. Boudjema, G. Drieu La Rochelle and S. Kulkarni, One-loop corrections, uncertainties and approximations in neutralino annihilations: examples, Phys. Rev. D 84 (2011) 116001 [arXiv:1108.4291] [INSPIRE].ADSGoogle Scholar
  77. [77]
    F. Boudjema, G.D. La Rochelle and A. Mariano, Relic density calculations beyond tree-level, exact calculations versus effective couplings: the ZZ final state, Phys. Rev. D 89 (2014) 115020 [arXiv:1403.7459] [INSPIRE].ADSGoogle Scholar
  78. [78]
    WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].CrossRefGoogle Scholar
  79. [79]
    Particle Data Group collaboration, K. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].Google Scholar
  80. [80]
    G.F. Giudice and A. Pomarol, Mass degeneracy of the Higgsinos, Phys. Lett. B 372 (1996) 253 [hep-ph/9512337] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].Google Scholar
  82. [82]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s} \) =8 TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].ADSGoogle Scholar
  83. [83]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector, JHEP 04 (2014) 169 [arXiv:1402.7029] [INSPIRE].ADSGoogle Scholar
  84. [84]
    A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    CMS, LHCb collaboration, V. Khachatryan et al., Observation of the rare B s0 → μ + μ decay from the combined analysis of CMS and LHCb data, arXiv:1411.4413 [INSPIRE].
  86. [86]
    G. Bélanger, A. Goudelis, J.-C. Park and A. Pukhov, Isospin-violating dark matter from a double portal, JCAP 02 (2014) 020 [arXiv:1311.0022] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  87. [87]
    C. Kelso, J. Kumar, P. Sandick and P. Stengel, Charged mediators in dark matter scattering with nuclei and the strangeness content of nucleons, Phys. Rev. D 91 (2015) 055028 [arXiv:1411.2634] [INSPIRE].ADSGoogle Scholar
  88. [88]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    P. Grothaus, M. Lindner and Y. Takanishi, Naturalness of neutralino dark matter, JHEP 07 (2013) 094 [arXiv:1207.4434] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    C. Cheung, L.J. Hall, D. Pinner and J.T. Ruderman, Prospects and blind spots for neutralino dark matter, JHEP 05 (2013) 100 [arXiv:1211.4873] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    C. Han et al., Probing light higgsinos in natural SUSY from monojet signals at the LHC, JHEP 02 (2014) 049 [arXiv:1310.4274] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    H. Baer, A. Mustafayev and X. Tata, Monojet plus soft dilepton signal from light higgsino pair production at LHC14, Phys. Rev. D 90 (2014) 115007 [arXiv:1409.7058] [INSPIRE].ADSGoogle Scholar
  93. [93]
    Z. Han, G.D. Kribs, A. Martin and A. Menon, Hunting quasidegenerate Higgsinos, Phys. Rev. D 89 (2014) 075007 [arXiv:1401.1235] [INSPIRE].ADSGoogle Scholar
  94. [94]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  95. [95]
    Z.-z. Xing, H. Zhang and S. Zhou, Updated values of running quark and lepton masses, Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Geneviève Bélanger
    • 1
  • Cédric Delaunay
    • 1
  • Andreas Goudelis
    • 1
    • 2
  1. 1.LAPTh, Université de Savoie, CNRS, 9 Chemin de BellevueAnnecy-le-VieuxFrance
  2. 2.Institute of High Energy PhysicsAustrian Academy of SciencesViennaAustria

Personalised recommendations