Associated production of single top and Higgs at the LHC in the littlest Higgs model with T-parity

Open Access
Regular Article - Theoretical Physics

Abstract

In the littlest Higgs model with T-parity (LHT), we study the t-channel single top production in association with a Higgs boson at 8 and 14 TeV LHC. We find that the cross section can be enhanced obviously in this model compared to the Standard Model. By performing a simple parton-level simulation through \( pp\to t\left(\to {\ell}^{+}\nu b\right)h\left(\to b\overline{b}\right)j \) at 14 TeV LHC, we find that the observability of the signal is promising in the favorable parameter space.

Keywords

Monte Carlo Simulations Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 f b −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013) [ATLAS-COM-CONF-2013-018] [INSPIRE].
  4. [4]
    ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 f b −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013) [ATLAS-COM-CONF-2013-035] [INSPIRE].
  5. [5]
    ATLAS collaboration, Study of the spin of the new boson with up to 25 f b −1 of ATLAS data, ATLAS-CONF-2013-040 (2013) [ATLAS-COM-CONF-2013-048] [INSPIRE].
  6. [6]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013) [INSPIRE].
  7. [7]
    S. Dawson et al., Working Group Report: Higgs Boson, arXiv:1310.8361 [INSPIRE].
  8. [8]
    C. Englert et al., Precision Measurements of Higgs Couplings: Implications for New Physics Scales, J. Phys. G 41 (2014) 113001 [arXiv:1403.7191] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.J. Cao, Z.X. Heng, L. Wu and J.M. Yang, Top quark forward-backward asymmetry at the Tevatron: A Comparative study in different new physics models, Phys. Rev. D 81 (2010) 014016 [arXiv:0912.1447] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.J. Cao, L. Wu and J.M. Yang, New physics effects on top quark spin correlation and polarization at the LHC: a comparative study in different models, Phys. Rev. D 83 (2011) 034024 [arXiv:1011.5564] [INSPIRE].ADSGoogle Scholar
  11. [11]
    B.F. Yang and N. Liu, One-loop effects on top pair production in the littlest Higgs model with T-parity at the LHC, Eur. Phys. J. C 73 (2013) 2570 [arXiv:1210.5120] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    ATLAS collaboration, Search for the Standard Model Higgs boson produced in association with top quarks in proton-proton collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, ATLAS-CONF-2012-135 (2012) [ATLAS-COM-CONF-2012-162] [INSPIRE].
  13. [13]
    CMS collaboration, Search for Higgs boson production in association with top quark pairs in pp collisions, CMS-PAS-HIG-12-025 (2012) [INSPIRE].
  14. [14]
    W. Beenakker, S. Dittmaier, M. Krämer, B. Plumper, M. Spira and P.M. Zerwas, Higgs radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett. 87 (2001) 201805 [hep-ph/0107081] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson production at the LHC, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Scalar and pseudoscalar Higgs production in association with a top-antitop pair, Phys. Lett. B 701 (2011) 427 [arXiv:1104.5613] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Trócsányi, Standard Model Higgs boson production in association with a top anti-top pair at NLO with parton showering, Europhys. Lett. 96 (2011) 11001 [arXiv:1108.0387] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C. Degrande, J.M. Gerard, C. Grojean, F. Maltoni and G. Servant, Probing Top-Higgs Non-Standard Interactions at the LHC, JHEP 07 (2012) 036 [arXiv:1205.1065] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Bordes and B. van Eijk, On the associate production of a neutral intermediate mass Higgs boson with a single top quark at the LHC and SSC, Phys. Lett. B 299 (1993) 315 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Ballestrero and E. Maina, \( t\overline{b}H \) production for an intermediate mass Higgs, Phys. Lett. B 299 (1993) 312 [INSPIRE].ADSGoogle Scholar
  21. [21]
    W.J. Stirling and D.J. Summers, Production of an intermediate mass Higgs boson in association with a single top quark at LHC and SSC, Phys. Lett. B 283 (1992) 411 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.L. Diaz-Cruz and O.A. Sampayo, Associated production of the Higgs boson with tb at hadron colliders, Phys. Lett. B 276 (1992) 211 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Associated production of Higgs and single top at hadron colliders, Phys. Rev. D 64 (2001) 094023 [hep-ph/0106293] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Farina, C. Grojean, F. Maltoni, E. Salvioni and A. Thamm, Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson, JHEP 05 (2013) 022 [arXiv:1211.3736] [INSPIRE].ADSGoogle Scholar
  25. [25]
    L. Wu, Enhancing thj Production from Top-Higgs FCNC Couplings, JHEP 02 (2015) 061 [arXiv:1407.6113] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Kobakhidze, L. Wu and J. Yue, Anomalous Top-Higgs Couplings and Top Polarisation in Single Top and Higgs Associated Production at the LHC, JHEP 10 (2014) 100 [arXiv:1406.1961] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Greljo, J.F. Kamenik and J. Kopp, Disentangling Flavor Violation in the Top-Higgs Sector at the LHC, JHEP 07 (2014) 046 [arXiv:1404.1278] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Khatibi and M.M. Najafabadi, Probing the Anomalous FCNC Interactions in Top-Higgs Final State and Charge Ratio Approach, Phys. Rev. D 89 (2014) 054011 [arXiv:1402.3073] [INSPIRE].ADSGoogle Scholar
  29. [29]
    B.F. Yang, N. Liu and J.Z. Han, Top Quark FCNC Decay to 125 GeV Higgs boson in the Littlest Higgs Model with T-parity, Phys. Rev. D 89 (2014) 034020 [arXiv:1308.4852] [INSPIRE].ADSGoogle Scholar
  30. [30]
    D. Atwood, S.K. Gupta and A. Soni, Constraining the flavor changing Higgs couplings to the top-quark at the LHC, JHEP 10 (2014) 057 [arXiv:1305.2427] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    Y. Wang, F.P. Huang, C.S. Li, B.H. Li, D.Y. Shao and J. Wang, Constraints on flavor-changing neutral-current Htq couplings from the signal of tH associated production with QCD next-to-leading order accuracy at the LHC, Phys. Rev. D 86 (2012) 094014 [arXiv:1208.2902] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J.J. Cao, L. Wang, L. Wu and J.M. Yang, Top quark forward-backward asymmetry, FCNC decays and like-sign pair production as a joint probe of new physics, Phys. Rev. D 84 (2011) 074001 [arXiv:1101.4456] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J.J. Cao, C.C. Han, L. Wu, J.M. Yang and M.C. Zhang, SUSY induced top quark FCNC decay tch after Run I of LHC, Eur. Phys. J. C 74 (2014) 3058 [arXiv:1404.1241] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J.J. Cao et al., SUSY-induced FCNC top-quark processes at the large hadron collider, Phys. Rev. D 75 (2007) 075021 [hep-ph/0702264] [INSPIRE].ADSGoogle Scholar
  35. [35]
    H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    I. Low, T parity and the littlest Higgs, JHEP 10 (2004) 067 [hep-ph/0409025] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. Hubisz and P. Meade, Phenomenology of the littlest Higgs with T-parity, Phys. Rev. D 71 (2005) 035016 [hep-ph/0411264] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S. Yang, Associated production of the Higgs boson and a single top quark in the littlest Higgs model at Large Hadron Collier, Phys. Lett. B 675 (2009) 352 [arXiv:0904.1646] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    C.-R. Chen, K. Tobe and C.-P. Yuan, Higgs boson production and decay in little Higgs models with T-parity, Phys. Lett. B 640 (2006) 263 [hep-ph/0602211] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  42. [42]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  43. [43]
    A. Belyaev, C.-R. Chen, K. Tobe and C.-P. Yuan, Phenomenology of littlest Higgs model with T -parity: including effects of T -odd fermions, Phys. Rev. D 74 (2006) 115020 [hep-ph/0609179] [INSPIRE].ADSGoogle Scholar
  44. [44]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].Google Scholar
  46. [46]
    J. Reuter, M. Tonini and M. de Vries, Littlest Higgs with T-parity: Status and Prospects, JHEP 02 (2014) 053 [arXiv:1310.2918] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Hubisz, P. Meade, A. Noble and M. Perelstein, Electroweak precision constraints on the littlest Higgs model with T parity, JHEP 01 (2006) 135 [hep-ph/0506042] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B.F. Yang, X.L. Wang and J.Z. Han, The Study of the contribution of the LHT model to \( Zb\overline{b} \) coupling, Nucl. Phys. B 847 (2011) 1 [arXiv:1103.2506] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    B.F. Yang, G. Mi and N. Liu, Higgs couplings and Naturalness in the littlest Higgs model with T-parity at the LHC and TLEP, JHEP 10 (2014) 047 [arXiv:1407.6123] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    L. Wang, J.M. Yang and J.Y. Zhu, Dark matter in the little Higgs model under current experimental constraints from the LHC, Planck and Xenon data, Phys. Rev. D 88 (2013) 075018 [arXiv:1307.7780] [INSPIRE].ADSGoogle Scholar
  51. [51]
    C.-R. Chen, M.-C. Lee and H.-C. Tsai, Implications of the Little Higgs Dark Matter and T-odd Fermions, JHEP 06 (2014) 074 [arXiv:1402.6815] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    CMS collaboration, Identification of b-quark jets with the CMS experiment, 2013 JINST 8 P04013 [arXiv:1211.4462] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    J. Chang, K.M. Cheung, J.S. Lee and C.-T. Lu, Probing the Top-Yukawa Coupling in Associated Higgs production with a Single Top Quark, JHEP 05 (2014) 062 [arXiv:1403.2053] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.College of Physics & Electronic EngineeringHenan Normal UniversityXinxiangChina
  2. 2.School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuoChina
  3. 3.Department of Physics and Electronic EngineeringZhoukou Normal UniversityZhoukouChina

Personalised recommendations