Simplified models for same-spin new physics scenarios

  • Lisa Edelhäuser
  • Michael Krämer
  • Jory Sonneveld
Open Access
Regular Article - Theoretical Physics


Simplified models are an important tool for the interpretation of searches for new physics at the LHC. They are defined by a small number of new particles together with a specific production and decay pattern. The simplified models adopted in the experimental analyses thus far have been derived from supersymmetric theories, and they have been used to set limits on supersymmetric particle masses. We investigate the applicability of such simplified supersymmetric models to a wider class of new physics scenarios, in particular those with same-spin Standard Model partners. We focus on the pair production of quark partners and analyze searches for jets and missing energy within a simplified supersymmetric model with scalar quarks and a simplified model with spin-1/2 quark partners. Despite sizable differences in the detection efficiencies due to the spin of the new particles, the limits on particle masses are found to be rather similar. We conclude that the supersymmetric simplified models employed in current experimental analyses also provide a reliable tool to constrain same-spin BSM scenarios.


Phenomenology of Field Theories in Higher Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    D. Alves et al., Simplified Models for LHC New Physics Searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J. Alwall, P. Schuster and N. Toro, Simplified Models for a First Characterization of New Physics at the LHC, Phys. Rev. D 79 (2009) 075020 [arXiv:0810.3921] [INSPIRE].ADSGoogle Scholar
  3. [3]
    CMS collaboration, Interpretation of Searches for Supersymmetry with simplified Models, Phys. Rev. D 88 (2013) 052017 [arXiv:1301.2175] [INSPIRE].ADSGoogle Scholar
  4. [4]
    S. Kraml et al., SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry, Eur. Phys. J. C 74 (2014) 2868 [arXiv:1312.4175] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Kraml et. al., SModelS v1.0: a short user guide, LPSC14295 (2014) [HEPHY-PUB-945-14] [arXiv:1412.1745] [INSPIRE].
  6. [6]
    M. Papucci, K. Sakurai, A. Weiler and L. Zeune, Fastlim: a fast LHC limit calculator, Eur. Phys. J. C 74 (2014) 3163 [arXiv:1402.0492] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Buckley, PySLHA: a Pythonic interface to SUSY Les Houches Accord data, arXiv:1305.4194 [INSPIRE].
  8. [8]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    CMS collaboration, Search for supersymmetry in hadronic final states with missing transverse energy using the variables α T and b-quark multiplicity in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 73 (2013) 2568 [arXiv:1303.2985] [INSPIRE].ADSGoogle Scholar
  11. [11]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2014) 055 [arXiv:1402.4770] [INSPIRE].ADSGoogle Scholar
  12. [12]
    CMS collaboration, Search for supersymmetry in hadronic final states using MT2 with the CMS detector at \( \sqrt{s}=8 \) TeV, CMS-PAS-SUS-13-019 (2014) [INSPIRE].
  13. [13]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb −1 of \( \sqrt{s}=8 \) TeV proton-proton collision data, ATLAS-CONF-2013-047 (2013) [ATLAS-COM-CONF-2013-049] [INSPIRE].
  14. [14]
    L. Edelhäuser, J. Heisig, M. Krämer, L. Oymanns and J. Sonneveld, Constraining supersymmetry at the LHC with simplified models for squark production, JHEP 12 (2014) 022 [arXiv:1410.0965] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].ADSGoogle Scholar
  16. [16]
    D. Hooper and S. Profumo, Dark matter and collider phenomenology of universal extra dimensions, Phys. Rept. 453 (2007) 29 [hep-ph/0701197] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. Servant and T.M.P. Tait, Elastic scattering and direct detection of Kaluza-Klein dark matter, New J. Phys. 4 (2002) 99 [hep-ph/0209262] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G. Cacciapaglia, A. Deandrea, J. Ellis, J. Marrouche and L. Panizzi, LHC Missing-Transverse-Energy Constraints on Models with Universal Extra Dimensions, Phys. Rev. D 87 (2013) 075006 [arXiv:1302.4750] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Datta, A. Datta and S. Poddar, Enriching the exploration of the mUED model with event shape variables at the CERN LHC, Phys. Lett. B 712 (2012) 219 [arXiv:1111.2912] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    L. Edelhäuser, T. Flacke and M. Krämer, Constraints on models with universal extra dimensions from dilepton searches at the LHC, JHEP 08 (2013) 091 [arXiv:1302.6076] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    N.D. Christensen et al., A Comprehensive approach to new physics simulations, Eur. Phys. J. C 71 (2011) 1541 [arXiv:0906.2474] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Datta, K. Kong and K.T. Matchev, Minimal Universal Extra Dimensions in CalcHEP/CompHEP New J. Phys. 12 (2010) 075017 [arXiv:1002.4624] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    H.-C. Cheng, K.T. Matchev and M. Schmaltz, Bosonic supersymmetry? Getting fooled at the CERN LHC, Phys. Rev. D 66 (2002) 056006 [hep-ph/0205314] [INSPIRE].ADSGoogle Scholar
  28. [28]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L. Moneta et al., The RooStats Project, PoS(ACAT2010)057 [arXiv:1009.1003] [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Lisa Edelhäuser
    • 1
  • Michael Krämer
    • 1
    • 2
  • Jory Sonneveld
    • 1
  1. 1.Institute for Theoretical Particle Physics and CosmologyRWTH Aachen UniversityAachenGermany
  2. 2.SLAC National Accelerator LaboratoryStanford UniversityMenlo ParkUnited States

Personalised recommendations