Top-quark initiated processes at high-energy hadron colliders

Open Access
Regular Article - Theoretical Physics

Abstract

In hadronic collisions at high energies, the top-quark may be treated as a parton inside a hadron. Top-quark initiated processes become increasingly important since the top-quark luminosity can reach a few percent of the bottom-quark luminosity. In the production of a heavy particle H with mass m H > m t , treating the top-quark as a parton allows us to resum large logarithms log(m H 2 /m t 2 ) arising from collinear splitting in the initial state. We quantify the effect of collinear resummation at the 14-TeV LHC and a future 100-TeV hadron collider, focusing on the top-quark open-flavor process \( gg\to t\overline{t}H \) in comparison with \( t\overline{t}\to H \) and tgtH at the leading order (LO) in QCD. We employ top-quark parton distribution functions with appropriate collinear subtraction and power counting. We find that (1) collinear resummation enhances the inclusive production of a heavy particle with m H ≈ 5 TeV (0.5 TeV) by more than a factor of two compared to the open-flavor process at a 100-TeV (14-TeV) collider; (2) top-quark mass effects are important for scales m H near the top-quark threshold, where the cross section is largest. We advocate a modification of the ACOT factorization scheme, dubbed m-ACOT, that consistently treats heavy-quark masses in hadronic collisions with two initial heavy quarks; (3) the scale uncertainty of the total cross section in m-ACOT is of about 20% at the LO. While a higher-order calculation is indispensable for a precise prediction, the LO cross section is well described by the process \( t\overline{t}\to H \) using an effective factorization scale significantly lower than m H . We illustrate our results by the example of a heavy spin-0 particle. Our main results also apply to the production of particles with spin-1 and 2.

Keywords

Beyond Standard Model Resummation QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Dawson et al., Working Group Report: Higgs Boson, arXiv:1310.8361 [INSPIRE].
  2. [2]
    Y. Gershtein et al., Working Group Report: New Particles, Forces and Dimensions, arXiv:1311.0299 [INSPIRE].
  3. [3]
    A. Hook and A. Katz, Unbroken SU(2) at a 100 TeV collider, JHEP 09 (2014) 175 [arXiv:1407.2607] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R.M. Barnett, H.E. Haber and D.E. Soper, Ultraheavy Particle Production from Heavy Partons at Hadron Colliders, Nucl. Phys. B 306 (1988) 697 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    F.I. Olness and W.-K. Tung, When Is a Heavy Quark Not a Parton? Charged Higgs Production and Heavy Quark Mass Effects in the QCD Based Parton Model, Nucl. Phys. B 308 (1988) 813 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Abdesselam et al., Boosted objects: A Probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    V.N. Gribov and L.N. Lipatov, Deep inelastic ep-scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [Yad. Fiz. 15 (1972) 781] [INSPIRE].
  8. [8]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R.S. Thorne and R.G. Roberts, An Ordered analysis of heavy flavor production in deep inelastic scattering, Phys. Rev. D 57 (1998) 6871 [hep-ph/9709442] [INSPIRE].ADSGoogle Scholar
  10. [10]
    M.A.G. Aivazis, J.C. Collins, F.I. Olness and W.-K. Tung, Leptoproduction of heavy quarks. 2. A Unified QCD formulation of charged and neutral current processes from fixed target to collider energies, Phys. Rev. D 50 (1994) 3102 [hep-ph/9312319] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J.C. Collins, Hard scattering factorization with heavy quarks: A General treatment, Phys. Rev. D 58 (1998) 094002 [hep-ph/9806259] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Krämer, Michael, F.I. Olness and D.E. Soper, Treatment of heavy quarks in deeply inelastic scattering, Phys. Rev. D 62 (2000) 096007 [hep-ph/0003035] [INSPIRE].
  13. [13]
    D.A. Dicus and S. Willenbrock, Higgs Boson Production from Heavy Quark Fusion, Phys. Rev. D 39 (1989) 751 [INSPIRE].ADSGoogle Scholar
  14. [14]
    D. Dicus, T. Stelzer, Z. Sullivan and S. Willenbrock, Higgs boson production in association with bottom quarks at next-to-leading order, Phys. Rev. D 59 (1999) 094016 [hep-ph/9811492] [INSPIRE].ADSGoogle Scholar
  15. [15]
    F. Maltoni, Z. Sullivan and S. Willenbrock, Higgs-boson production via bottom-quark fusion, Phys. Rev. D 67 (2003) 093005 [hep-ph/0301033] [INSPIRE].ADSGoogle Scholar
  16. [16]
    F. Maltoni, G. Ridolfi and M. Ubiali, b-initiated processes at the LHC: a reappraisal, JHEP 07 (2012) 022 [Erratum ibid. 04 (2013) 095] [arXiv:1203.6393] [INSPIRE].
  17. [17]
    S. Dawson, A. Ismail and I. Low, Redux onWhen is the top quark a parton?”, Phys. Rev. D 90 (2014) 014005 [arXiv:1405.6211] [INSPIRE].ADSGoogle Scholar
  18. [18]
    LHC Higgs Cross Section Working Group, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].
  19. [19]
    C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [INSPIRE].
  20. [20]
    K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A.L. Fitzpatrick, J. Kaplan, L. Randall and L.-T. Wang, Searching for the Kaluza-Klein Graviton in Bulk RS Models, JHEP 09 (2007) 013 [hep-ph/0701150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Experimental probes of localized gravity: On and off the wall, Phys. Rev. D 63 (2001) 075004 [hep-ph/0006041] [INSPIRE].ADSGoogle Scholar
  23. [23]
    T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Buza, Y. Matiounine, J. Smith and W.L. van Neerven, Charm electroproduction viewed in the variable flavor number scheme versus fixed order perturbation theory, Eur. Phys. J. C 1 (1998) 301 [hep-ph/9612398] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Higgs-Boson production in association with a single bottom quark, Phys. Rev. D 67 (2003) 095002 [hep-ph/0204093] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J. Collins and C.-P. Yuan, private communication.Google Scholar
  29. [29]
    S. Kretzer, H.L. Lai, F.I. Olness and W.-K. Tung, CTEQ6 parton distributions with heavy quark mass effects, Phys. Rev. D 69 (2004) 114005 [hep-ph/0307022] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Cacciari, M. Greco and P. Nason, The p T spectrum in heavy flavor hadroproduction, JHEP 05 (1998) 007 [hep-ph/9803400] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S. Forte, E. Laenen, P. Nason and J. Rojo, Heavy quarks in deep-inelastic scattering, Nucl. Phys. B 834 (2010) 116 [arXiv:1001.2312] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    W.-K. Tung, S. Kretzer and C. Schmidt, Open heavy flavor production in QCD: Conceptual framework and implementation issues, J. Phys. G 28 (2002) 983 [hep-ph/0110247] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Hahn, CUBA: A Library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Dawson, C. Jackson, L.H. Orr, L. Reina and D. Wackeroth, Associated Higgs production with top quarks at the large hadron collider: NLO QCD corrections, Phys. Rev. D 68 (2003) 034022 [hep-ph/0305087] [INSPIRE].ADSGoogle Scholar
  36. [36]
    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs Bosons from Two-Gluon Annihilation in Proton-Proton Collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G. Curci, W. Furmanski and R. Petronzio, Evolution of Parton Densities Beyond Leading Order: The Nonsinglet Case, Nucl. Phys. B 175 (1980) 27 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.PITTsburgh Particle-physics Astro-physics & Cosmology Center (PITT-PACC), Department of Physics & AstronomyUniversity of PittsburghPittsburghUnited States

Personalised recommendations