Advertisement

Higher-spin gravity as a theory on a fixed (anti) de Sitter background

Open Access
Regular Article - Theoretical Physics

Abstract

We study Vasiliev’s higher-spin gravity in 3+1d. We formulate the theory in the so-called compensator formalism, where the local isometry group SO(4, 1) is reduced to the Lorentz group SO(3, 1) by a choice of spacelike direction in an internal 4+1d space. We present a consistent extension of Vasiliev’s equations that allows this internal direction to become spacetime-dependent. This allows a new point of view on the theory, where spacetime is identified with the de Sitter space of possible internal directions. We thus obtain an interacting theory of higher-spin massless gauge fields on a fixed, maximally symmetric background spacetime. We expect implications for the physical interpretation of higher-spin gravity, for the search for a Lagrangian formulation and/or quantization, as well as for higher-spin holography.

Keywords

Higher Spin Gravity Higher Spin Symmetry Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    M.A. Vasiliev, Higher spin gauge theories: Star product and AdS space, in Y. Golfand and M.A. Shifman, The Many Faces of the Superworld: Yuri Golfand Memorial Volume, World Scientific Pub. Co. Inc. (1999), pp. 533-610, [hep-th/9910096] [INSPIRE].
  3. [3]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N ) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    S. Giombi and X. Yin, The Higher Spin/Vector Model Duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  6. [6]
    D. Anninos, T. Hartman and A. Strominger, Higher Spin Realization of the dS/CFT Correspondence, arXiv:1108.5735 [INSPIRE].
  7. [7]
    C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ Triality: from Higher Spin Fields to Strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  8. [8]
    M.A. Vasiliev, Cubic interactions of bosonic higher spin gauge fields in AdS 5, Nucl. Phys. B 616 (2001) 106 [Erratum ibid. B 652 (2003) 407] [hep-th/0106200] [INSPIRE].
  9. [9]
    V.E. Didenko and E.D. Skvortsov, Towards higher-spin holography in ambient space of any dimension, J. Phys. A 46 (2013) 214010 [arXiv:1207.6786] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  10. [10]
    Y. Neiman, Twistors and antipodes in de Sitter space, Phys. Rev. D 89 (2014) 063521 [arXiv:1312.7842] [INSPIRE].ADSGoogle Scholar
  11. [11]
    R. Penrose and W. Rindler, Spinors And Space-time. Volume 2. Spinor And Twistor Methods In Space-time Geometry, Cambridge University Press, Cambridge U.K. (1986).MATHGoogle Scholar
  12. [12]
    R.S. Ward and R.O. Wells, Twistor geometry and field theory, Cambridge University Press, Cambridge U.K. (1990).CrossRefMATHGoogle Scholar
  13. [13]
    Y. Neiman, Antipodally symmetric gauge fields and higher-spin gravity in de Sitter space, JHEP 10 (2014) 153 [arXiv:1406.3291] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    M.A. Vasiliev, Holography, Unfolding and Higher-Spin Theory, J. Phys. A 46 (2013) 214013 [arXiv:1203.5554] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  15. [15]
    J.M. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  16. [16]
    S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    N. Colombo and P. Sundell, Higher Spin Gravity Amplitudes From Zero-form Charges, arXiv:1208.3880 [INSPIRE].
  19. [19]
    V.E. Didenko and E.D. Skvortsov, Exact higher-spin symmetry in CFT: all correlators in unbroken Vasiliev theory, JHEP 04 (2013) 158 [arXiv:1210.7963] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    V.E. Didenko, J. Mei and E.D. Skvortsov, Exact higher-spin symmetry in CFT: free fermion correlators from Vasiliev Theory, Phys. Rev. D 88 (2013) 046011 [arXiv:1301.4166] [INSPIRE].ADSGoogle Scholar
  21. [21]
    N. Boulanger and P. Sundell, An action principle for Vasilievs four-dimensional higher-spin gravity, J. Phys. A 44 (2011) 495402 [arXiv:1102.2219] [INSPIRE].MathSciNetMATHGoogle Scholar
  22. [22]
    N. Boulanger, N. Colombo and P. Sundell, A minimal BV action for Vasilievs four-dimensional higher spin gravity, JHEP 10 (2012) 043 [arXiv:1205.3339] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations