Advertisement

Lifting 4d dualities to 5d

  • Oren Bergman
  • Gabi Zafrir
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper we set out to further explore the connection between isolated \( \mathcal{N}=2 \) SCFT’s in four dimensions and \( \mathcal{N}=1 \) SCFT’s in five dimensions. Using 5-brane webs we are able to provide IR Lagrangian descriptions in terms of 5d gauge theories for several classes of theories including the so-called T N theories. In many of these we find multiple dual gauge theory descriptions. The connection to 4d theories is then used to lift 4d \( \mathcal{N}=2 \) S-dualities that involve weakly-gauging isolated theories to 5d gauge theory dualities. The 5d description allows one to study the spectrum of BPS operators directly, using for example the superconformal index. This provides additional non-trivial checks of enhanced global symmetries and 4d dualities.

Keywords

Brane Dynamics in Gauge Theories Duality in Gauge Field Theories Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E 6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  2. [2]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    O. Chacaltana and J. Distler, Tinkertoys for Gaiotto Duality, JHEP 11 (2010) 099 [arXiv:1008.5203] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    H.-C. Kim, S.-S. Kim and K. Lee, 5-dim Superconformal Index with Enhanced En Global Symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    L. Bao, E. Pomoni, M. Taki and F. Yagi, M5-Branes, Toric Diagrams and Gauge Theory Duality, JHEP 04 (2012) 105 [arXiv:1112.5228] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5-Brane Webs, Symmetry Enhancement and Duality in 5d Supersymmetric Gauge Theory, JHEP 03 (2014) 112 [arXiv:1311.4199] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    L. Bao, V. Mitev, E. Pomoni, M. Taki and F. Yagi, Non-Lagrangian Theories from Brane Junctions, JHEP 01 (2014) 175 [arXiv:1310.3841] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    H. Hayashi, H.-C. Kim and T. Nishinaka, Topological strings and 5d T N partition functions, JHEP 06 (2014) 014 [arXiv:1310.3854] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Aganagic, N. Haouzi and S. Shakirov, A n -Triality, arXiv:1403.3657 [INSPIRE].
  16. [16]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    O. Bergman and G. Zafrir, work in progress.Google Scholar
  18. [18]
    C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, arXiv:1406.6793 [INSPIRE].
  19. [19]
    G. Zafrir, Duality and enhancement of symmetry in 5d gauge theories, JHEP 12 (2014) 116 [arXiv:1408.4040] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    Y. Tachikawa, N = 2 supersymmetric dynamics for pedestrians, Lect. Notes Phys. 890 (2013) 2014 [arXiv:1312.2684] [INSPIRE].Google Scholar
  22. [22]
    J. McGrane and B. Wecht, Theories of Class S and New N = 1 SCFTs, arXiv:1409.7668 [INSPIRE].
  23. [23]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359 [hep-th/0404225] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    S. Shadchin, On certain aspects of string theory/gauge theory correspondence, hep-th/0502180 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of PhysicsTechnion, Israel Institute of TechnologyHaifaIsrael

Personalised recommendations