Electrically-charged Lifshitz spacetimes, and hyperscaling violations

  • Zhong-Ying Fan
  • H. LüEmail author
Open Access
Regular Article - Theoretical Physics


Electrically-charged Lifshitz spacetimes are hard to come by. In this paper, we construct a class of such solutions in five dimensional Einstein gravity coupled to Maxwell and SU(2) Yang-Mills fields. The solutions are electrically-charged under the Maxwell field, whose equation is sourced by the Yang-Mills instanton(-like) configuration living in the hyperbolic four-space of the Lifshitz spacetime. We then introduce a dilaton and construct charged and colored Lifshitz spacetimes with hyperscaling violations. We obtain a class of exact Lifshitz black holes. We also perform similar constructions in four dimensions.


Holography and condensed matter physics (AdS/CMT) AdS-CFT Correspondence Black Holes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  3. [3]
    S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D 83 (2011) 046003 [arXiv:1008.2828] [INSPIRE].ADSGoogle Scholar
  4. [4]
    K. Balasubramanian and K. Narayan, Lifshitz spacetimes from AdS null and cosmological solutions, JHEP 08 (2010) 014 [arXiv:1005.3291] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Donos and J.P. Gauntlett, Lifshitz Solutions of D = 10 and D = 11 supergravity, JHEP 12 (2010) 002 [arXiv:1008.2062] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H. Singh, Special limits and non-relativistic solutions, JHEP 12 (2010) 061 [arXiv:1009.0651] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    R. Gregory, S.L. Parameswaran, G. Tasinato and I. Zavala, Lifshitz solutions in supergravity and string theory, JHEP 12 (2010) 047 [arXiv:1009.3445] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Donos, J.P. Gauntlett, N. Kim and O. Varela, Wrapped M5-branes, consistent truncations and AdS/CMT, JHEP 12 (2010) 003 [arXiv:1009.3805] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    D. Cassani and A.F. Faedo, Constructing Lifshitz solutions from AdS, JHEP 05 (2011) 013 [arXiv:1102.5344] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    N. Halmagyi, M. Petrini and A. Zaffaroni, Non-Relativistic Solutions of N = 2 Gauged Supergravity, JHEP 08 (2011) 041 [arXiv:1102.5740] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    W. Chemissany and J. Hartong, From D3-branes to Lifshitz Space-Times, Class. Quant. Grav. 28 (2011) 195011 [arXiv:1105.0612] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    H.-S. Liu and H. Lü, Lifshitz and Schrödinger vacua, superstar resolution in gauged maximal supergravities, JHEP 02 (2014) 122 [arXiv:1310.8348] [INSPIRE].ADSGoogle Scholar
  13. [13]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    B. Gouteraux and E. Kiritsis, Generalized Holographic Quantum Criticality at Finite Density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    K. Narayan, On Lifshitz scaling and hyperscaling violation in string theory, Phys. Rev. D 85 (2012) 106006 [arXiv:1202.5935] [INSPIRE].ADSGoogle Scholar
  19. [19]
    E. Perlmutter, Hyperscaling violation from supergravity, JHEP 06 (2012) 165 [arXiv:1205.0242] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Ammon, M. Kaminski and A. Karch, Hyperscaling-Violation on Probe D-branes, JHEP 11 (2012) 028 [arXiv:1207.1726] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Bhattacharya, S. Cremonini and A. Sinkovics, On the IR completion of geometries with hyperscaling violation, JHEP 02 (2013) 147 [arXiv:1208.1752] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    P. Dey and S. Roy, Lifshitz metric with hyperscaling violation from NS5-Dp states in string theory, Phys. Lett. B 720 (2013) 419 [arXiv:1209.1049] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Alishahiha, E. O Colgain and H. Yavartanoo, Charged Black Branes with Hyperscaling Violating Factor, JHEP 11 (2012) 137 [arXiv:1209.3946] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Gath, J. Hartong, R. Monteiro and N.A. Obers, Holographic Models for Theories with Hyperscaling Violation, JHEP 04 (2013) 159 [arXiv:1212.3263] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Bueno, W. Chemissany and C.S. Shahbazi, On hvLif -like solutions in gauged Supergravity, Eur. Phys. J. C 74 (2014) 2684 [arXiv:1212.4826] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    N. Iizuka, S. Kachru, N. Kundu, P. Narayan, N. Sircar et al., Extremal Horizons with Reduced Symmetry: Hyperscaling Violation, Stripes and a Classification for the Homogeneous Case, JHEP 03 (2013) 126 [arXiv:1212.1948] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Z. Fan, Holographic fermions in asymptotically scaling geometries with hyperscaling violation, Phys. Rev. D 88 (2013) 026018 [arXiv:1303.6053] [INSPIRE].ADSGoogle Scholar
  28. [28]
    Z. Fan, Dynamic Mott gap from holographic fermions in geometries with hyperscaling violation, JHEP 08 (2013) 119 [arXiv:1305.1151] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    Z. Fan, Holographic superconductors with hyperscaling violation, JHEP 09 (2013) 048 [arXiv:1305.2000] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Bhattacharya, S. Cremonini and B. Goutéraux, Intermediate scalings in holographic RG flows and conductivities, JHEP 02 (2015) 035 [arXiv:1409.4797] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    L.J. Romans, Gauged N = 4 Supergravities in Five-dimensions and Their Magnetovac Backgrounds, Nucl. Phys. B 267 (1986) 433 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    Z.-Y. Fan and H. Lü, Charged Black Holes in Colored Lifshitz Spacetimes, Phys. Lett. B 743 (2015) 290 [arXiv:1501.01727] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    T. Zingg, Thermodynamics of Dyonic Lifshitz Black Holes, JHEP 09 (2011) 067 [arXiv:1107.3117] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    H.-S. Liu and H. Lü, Thermodynamics of Lifshitz Black Holes, JHEP 12 (2014) 071 [arXiv:1410.6181] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Z.-Y. Fan and H. Lü, SU(2)-Colored (A)dS Black Holes in Conformal Gravity, JHEP 02 (2015) 013 [arXiv:1411.5372] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    Z.-Y. Fan and H. Lü, Thermodynamical First Laws of Black Holes in Quadratically-Extended Gravities, Phys. Rev. D 91 (2015) 064009 [arXiv:1501.00006] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Bravo-Gaete and M. Hassaine, Thermodynamics of charged Lifshitz black holes with quadratic corrections, Phys. Rev. D 91 (2015) 064038 [arXiv:1501.03348] [INSPIRE].ADSGoogle Scholar
  38. [38]
    D.O. Devecioğlu, Lifshitz black holes in Einstein- Yang-Mills theory, Phys. Rev. D 89 (2014) 124020 [arXiv:1401.2133] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of PhysicsBeijing Normal UniversityBeijingChina

Personalised recommendations