Static \( \overline{\mathrm{Q}}\mathrm{Q} \) pair free energy and screening masses from correlators of Polyakov loops: continuum extrapolated lattice results at the QCD physical point

  • Szabolcs Borsányi
  • Zoltán Fodor
  • Sándor D. Katz
  • Attila Pásztor
  • Kálmán K. Szabó
  • Csaba Török
Open Access
Regular Article - Theoretical Physics

Abstract

We study the correlators of Polyakov loops, and the corresponding gauge invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temperature. Our simulations were carried out on N t = 6, 8, 10, 12, 16 lattices using a Symanzik improved gauge action and a stout improved staggered action with physical quark masses. The free energies calculated from the Polyakov loop correlators are extrapolated to the continuum limit. For the free energies we use a two step renormalization procedure that only uses data at finite temperature. We also measure correlators with definite Euclidean time reversal and charge conjugation symmetry to extract two different screening masses, one in the magnetic, and one in the electric sector, to distinguish two different correlation lengths in the full Polyakov loop correlator.

Keywords

Quark-Gluon Plasma Lattice QCD Lattice Gauge Field Theories Phase Diagram of QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabo, The Order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Cheng et al., The Transition temperature in QCD, Phys. Rev. D 74 (2006) 054507 [hep-lat/0608013] [INSPIRE].ADSGoogle Scholar
  3. [3]
    Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabo, The QCD transition temperature: Results with physical masses in the continuum limit, Phys. Lett. B 643 (2006) 46 [hep-lat/0609068] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II., JHEP 06 (2009) 088 [arXiv:0903.4155] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].ADSGoogle Scholar
  7. [7]
    T. Matsui and H. Satz, J/ψ Suppression by quark-gluon Plasma Formation, Phys. Lett. B 178 (1986) 416 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Jakovac, P. Petreczky, K. Petrov and A. Velytsky, Quarkonium correlators and spectral functions at zero and finite temperature, Phys. Rev. D 75 (2007) 014506 [hep-lat/0611017] [INSPIRE].ADSGoogle Scholar
  9. [9]
    T. Umeda, K. Nomura and H. Matsufuru, Charmonium at finite temperature in quenched lattice QCD, Eur. Phys. J. C 39S1 (2005) 9 [hep-lat/0211003] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Asakawa and T. Hatsuda, J/ψ and η c in the deconfined plasma from lattice QCD, Phys. Rev. Lett. 92 (2004) 012001 [hep-lat/0308034] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    H. Iida, T. Doi, N. Ishii, H. Suganuma and K. Tsumura, Charmonium properties in deconfinement phase in anisotropic lattice QCD, Phys. Rev. D 74 (2006) 074502 [hep-lat/0602008] [INSPIRE].ADSGoogle Scholar
  12. [12]
    WHOT-QCD collaboration, H. Ohno et al., Charmonium spectral functions with the variational method in zero and finite temperature lattice QCD, Phys. Rev. D 84 (2011) 094504 [arXiv:1104.3384] [INSPIRE].Google Scholar
  13. [13]
    H.T. Ding, A. Francis, O. Kaczmarek, F. Karsch, H. Satz and W. Soeldner, Charmonium properties in hot quenched lattice QCD, Phys. Rev. D 86 (2012) 014509 [arXiv:1204.4945] [INSPIRE].ADSGoogle Scholar
  14. [14]
    G. Aarts, C. Allton, M.B. Oktay, M. Peardon and J.-I. Skullerud, Charmonium at high temperature in two-flavor QCD, Phys. Rev. D 76 (2007) 094513 [arXiv:0705.2198] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Kelly, J.-I. Skullerud, C. Allton, D. Mehta and M.B. Oktay, Spectral functions of charmonium from 2 flavour anisotropic lattice data, PoS(LATTICE 2013)170 [arXiv:1312.0791] [INSPIRE].
  16. [16]
    S. Borsányi et al., Charmonium spectral functions from 2 + 1 flavour lattice QCD, JHEP 04 (2014) 132 [arXiv:1401.5940] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G. Aarts et al., S wave bottomonium states moving in a quark-gluon plasma from lattice NRQCD, JHEP 03 (2013) 084 [arXiv:1210.2903] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. Aarts, C. Allton, S. Kim, M.P. Lombardo, S.M. Ryan and J.-I. Skullerud, Melting of P wave bottomonium states in the quark-gluon plasma from lattice NRQCD, JHEP 12 (2013) 064 [arXiv:1310.5467] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Kim, P. Petreczky and A. Rothkopf, Lattice NRQCD study of in-medium bottomonium states using N f = 2 + 1, 483 × 12 HotQCD configurations, PoS(LATTICE 2013)169 [arXiv:1310.6461] [INSPIRE].
  20. [20]
    S. Borsányi et al., Spectral functions of charmonium with 2 + 1 flavours of dynamical quarks, arXiv:1410.7443 [INSPIRE].
  21. [21]
    S. Nadkarni, Nonabelian Debye Screening. 2. The Singlet Potential, Phys. Rev. D 34 (1986) 3904 [INSPIRE].ADSGoogle Scholar
  22. [22]
    O. Kaczmarek, F. Karsch, P. Petreczky and F. Zantow, Heavy quark anti-quark free energy and the renormalized Polyakov loop, Phys. Lett. B 543 (2002) 41 [hep-lat/0207002] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    O. Kaczmarek, F. Karsch, F. Zantow and P. Petreczky, Static quark anti-quark free energy and the running coupling at finite temperature, Phys. Rev. D 70 (2004) 074505 [Erratum ibid. D 72 (2005) 059903] [hep-lat/0406036] [INSPIRE].
  24. [24]
    O. Kaczmarek and F. Zantow, Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding, Phys. Rev. D 71 (2005) 114510 [hep-lat/0503017] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Mócsy and P. Petreczky, Can quarkonia survive deconfinement?, Phys. Rev. D 77 (2008) 014501 [arXiv:0705.2559] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Laine, O. Philipsen, P. Romatschke and M. Tassler, Real-time static potential in hot QCD, JHEP 03 (2007) 054 [hep-ph/0611300] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Rothkopf, T. Hatsuda and S. Sasaki, Complex Heavy-Quark Potential at Finite Temperature from Lattice QCD, Phys. Rev. Lett. 108 (2012) 162001 [arXiv:1108.1579] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    L.D. McLerran and B. Svetitsky, Quark Liberation at High Temperature: A Monte Carlo Study of SU(2) Gauge Theory, Phys. Rev. D 24 (1981) 450 [INSPIRE].ADSGoogle Scholar
  29. [29]
    S. Nadkarni, Nonabelian Debye Screening. 1. The Color Averaged Potential, Phys. Rev. D 33 (1986) 3738 [INSPIRE].ADSGoogle Scholar
  30. [30]
    N. Brambilla, J. Ghiglieri, P. Petreczky and A. Vairo, The Polyakov loop and correlator of Polyakov loops at next-to-next-to-leading order, Phys. Rev. D 82 (2010) 074019 [arXiv:1007.5172] [INSPIRE].ADSGoogle Scholar
  31. [31]
    E. Braaten and A. Nieto, Asymptotic behavior of the correlator for Polyakov loops, Phys. Rev. Lett. 74 (1995) 3530 [hep-ph/9410218] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    WHOT-QCD collaboration, Y. Maezawa et al., Electric and Magnetic Screening Masses at Finite Temperature from Generalized Polyakov-Line Correlations in Two-flavor Lattice QCD, Phys. Rev. D 81 (2010) 091501 [arXiv:1003.1361] [INSPIRE].Google Scholar
  33. [33]
    P.B. Arnold and L.G. Yaffe, The NonAbelian Debye screening length beyond leading order, Phys. Rev. D 52 (1995) 7208 [hep-ph/9508280] [INSPIRE].ADSGoogle Scholar
  34. [34]
    Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabo, The Equation of state in lattice QCD: With physical quark masses towards the continuum limit, JHEP 01 (2006) 089 [hep-lat/0510084] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Z. Fodor, A. Jakovac, S.D. Katz and K.K. Szabo, Static quark free energies at finite temperature, PoS(LATTICE 2007)196 [arXiv:0710.4119] [INSPIRE].
  36. [36]
    S. Borsányi, Z. Fodor, C. Hölbling, S.D. Katz, S. Krieg and K.K. Szabo, Full result for the QCD equation of state with 2 + 1 flavors, Phys. Lett. B 730 (2014) 99 [arXiv:1309.5258] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Gupta, K. Huebner and O. Kaczmarek, Renormalized Polyakov loops in many representations, Phys. Rev. D 77 (2008) 034503 [arXiv:0711.2251] [INSPIRE].ADSGoogle Scholar
  38. [38]
    S. Borsányi et al., QCD thermodynamics with continuum extrapolated Wilson fermions I, JHEP 08 (2012) 126 [arXiv:1205.0440] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Dürr et al., Ab-Initio Determination of Light Hadron Masses, Science 322 (2008) 1224 [arXiv:0906.3599] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Bazavov and P. Petreczky, Polyakov loop in 2 + 1 flavor QCD, Phys. Rev. D 87 (2013) 094505 [arXiv:1301.3943] [INSPIRE].ADSGoogle Scholar
  41. [41]
    S. Borsányi et al., Ab initio calculation of the neutron-proton mass difference, Science 347 (2015) 1452 [arXiv:1406.4088] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    H. Akaike, A new look at the statistical model identification, IEEE Trans. Automat. Contr. 19 (1974) 716.ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    A. Hart, M. Laine and O. Philipsen, Static correlation lengths in QCD at high temperatures and finite densities, Nucl. Phys. B 586 (2000) 443 [hep-ph/0004060] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    D. Bak, A. Karch and L.G. Yaffe, Debye screening in strongly coupled N = 4 supersymmetric Yang-Mills plasma, JHEP 08 (2007) 049 [arXiv:0705.0994] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    G.I. Egri, Z. Fodor, C. Hölbling, S.D. Katz, D. Nogradi and K.K. Szabo, Lattice QCD as a video game, Comput. Phys. Commun. 177 (2007) 631 [hep-lat/0611022] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Szabolcs Borsányi
    • 1
  • Zoltán Fodor
    • 1
    • 2
    • 3
  • Sándor D. Katz
    • 3
    • 4
  • Attila Pásztor
    • 3
    • 4
  • Kálmán K. Szabó
    • 1
    • 2
  • Csaba Török
    • 4
  1. 1.Department of PhysicsUniversity of WuppertalWuppertalGermany
  2. 2.Jülich Supercomputing CenterJülichGermany
  3. 3.Institute for Theoretical PhysicsEötvös UniversityBudapestHungary
  4. 4.MTA-ELTE “Lendület” Lattice Gauge Theory Research GroupBudapestHungary

Personalised recommendations