Dynamically generated gap from holography in the charged black brane with hyperscaling violation

  • Xiao-Mei Kuang
  • Eleftherios Papantonopoulos
  • Bin Wang
  • Jian-Pin Wu
Open Access
Regular Article - Theoretical Physics


We holographically investigate the effects of a dipole coupling between a fermion field and a U(1) gauge field on the dual fermionic sector in the charged gravity bulk with hyperscaling violation. We analytically study the features of the ultraviolet and infrared Green’s functions of the dual fermionic system and we show that as the dipole coupling and the hyperscaling violation exponent are varied, the fluid possess Fermi, marginal Fermi, non-Fermi liquid phases and also an additional Mott insulating phase. We find that the increase of the hyperscaling violation exponent which effectively reduces the dimensionality of the system makes it harder for the Mott gap to be formed. We also show that the observed duality between zeros and poles in the presence of a dipole moment coupling still persists in theories with hyperscaling violation.


AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A Semiclassical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    S.-S. Lee, A Non-Fermi Liquid from a Charged Black Hole: A Critical Fermi Ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].ADSGoogle Scholar
  5. [5]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Cubrovic, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Edalati, R.G. Leigh and P.W. Phillips, Dynamically Generated Mott Gap from Holography, Phys. Rev. Lett. 106 (2011) 091602 [arXiv:1010.3238] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Edalati, R.G. Leigh, K.W. Lo and P.W. Phillips, Dynamical Gap and Cuprate-like Physics from Holography, Phys. Rev. D 83 (2011) 046012 [arXiv:1012.3751] [INSPIRE].ADSGoogle Scholar
  10. [10]
    D. Guarrera and J. McGreevy, Holographic Fermi surfaces and bulk dipole couplings, arXiv:1102.3908 [INSPIRE].
  11. [11]
    J.P. Wu, Holographic fermions in charged Gauss-Bonnet black hole, JHEP 07 (2011) 106 [arXiv:1103.3982] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    X.-M. Kuang, B. Wang and J.-P. Wu, Dynamical gap from holography in the charged dilaton black hole, Class. Quant. Grav. 30 (2013) 145011 [arXiv:1210.5735] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    X.-M. Kuang, B. Wang and J.-P. Wu, Dipole Coupling Effect of Holographic Fermion in the Background of Charged Gauss-Bonnet AdS Black Hole, JHEP 07 (2012) 125 [arXiv:1205.6674] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    L.Q. Fang, X.-H. Ge and X.-M. Kuang, Holographic fermions with running chemical potential and dipole coupling, Nucl. Phys. B 877 (2013) 807 [arXiv:1304.7431] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    J.-P. Wu, Some properties of the holographic fermions in an extremal charged dilatonic black hole, Phys. Rev. D 84 (2011) 064008 [arXiv:1108.6134] [INSPIRE].ADSGoogle Scholar
  16. [16]
    W.-J. Li and J.-P. Wu, Holographic fermions in charged dilaton black branes, Nucl. Phys. B 867 (2013) 810 [arXiv:1203.0674] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    W.-J. Li, R. Meyer and H.-b. Zhang, Holographic non-relativistic fermionic fixed point by the charged dilatonic black hole, JHEP 01 (2012) 153 [arXiv:1111.3783] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    W.-J. Li and H.-b. Zhang, Holographic non-relativistic fermionic fixed point and bulk dipole coupling, JHEP 11 (2011) 018 [arXiv:1110.4559] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    Y. Ling, P. Liu, C. Niu, J.-P. Wu and Z.-Y. Xian, Holographic fermionic system with dipole coupling on Q-lattice, JHEP 12 (2014) 149 [arXiv:1410.7323] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Alsup, E. Papantonopoulos, G. Siopsis and K. Yeter, Duality between zeroes and poles in holographic systems with massless fermions and a dipole coupling, Phys. Rev. D 90 (2014) 126013 [arXiv:1404.4010] [INSPIRE].ADSGoogle Scholar
  21. [21]
    G. Vanacore and P.W. Phillips, Minding the Gap in Holographic Models of Interacting Fermions, Phys. Rev. D 90 (2014) 044022 [arXiv:1405.1041] [INSPIRE].ADSGoogle Scholar
  22. [22]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    B. Gouteraux and E. Kiritsis, Generalized Holographic Quantum Criticality at Finite Density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  24. [24]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    D.S. Fisher, Scaling and critical slowing down in random-field Ising systems, Phys. Rev. Lett. 56 (1986) 416 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  29. [29]
    D.-W. Pang, A Note on Black Holes in Asymptotically Lifshitz Spacetime, Commun. Theor. Phys. 62 (2014) 265 [arXiv:0905.2678] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    J. Tarrio and S. Vandoren, Black holes and black branes in Lifshitz spacetimes, JHEP 09 (2011) 017 [arXiv:1105.6335] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi Surfaces and Entanglement Entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    M.M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96 (2006) 010404 [quant-ph/0503219] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    B. Swingle, Entanglement Entropy and the Fermi Surface, Phys. Rev. Lett. 105 (2010) 050502 [arXiv:0908.1724] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    U. Gürsoy, E. Plauschinn, H. Stoof and S. Vandoren, Holography and ARPES Sum-Rules, JHEP 05 (2012) 018 [arXiv:1112.5074] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    M. Alishahiha, M.R. Mohammadi Mozaffar and A. Mollabashi, Fermions on Lifshitz Background, Phys. Rev. D 86 (2012) 026002 [arXiv:1201.1764] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Alishahiha, E. O Colgain and H. Yavartanoo, Charged Black Branes with Hyperscaling Violating Factor, JHEP 11 (2012) 137 [arXiv:1209.3946] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    L.Q. Fang, X.-H. Ge and X.-M. Kuang, Holographic fermions in charged Lifshitz theory, Phys. Rev. D 86 (2012) 105037 [arXiv:1201.3832] [INSPIRE].ADSGoogle Scholar
  38. [38]
    X.-M. Kuang, E. Papantonopoulos, B. Wang and J.-P. Wu, Formation of Fermi surfaces and the appearance of liquid phases in holographic theories with hyperscaling violation, JHEP 11 (2014) 086 [arXiv:1409.2945] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.-P. Wu, Holographic fermions on a charged Lifshitz background from Einstein-Dilaton-Maxwell model, JHEP 03 (2013) 083 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.-P. Wu, Emergence of gap from holographic fermions on charged Lifshitz background, JHEP 04 (2013) 073 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J.-P. Wu, The charged Lifshitz black brane geometry and the bulk dipole coupling, Phys. Lett. B 728 (2014) 450 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  42. [42]
    T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, From Black Holes to Strange Metals, arXiv:1003.1728 [INSPIRE].
  43. [43]
    N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    J.N. Laia and D. Tong, A Holographic Flat Band, JHEP 11 (2011) 125 [arXiv:1108.1381] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    X.-M. Kuang, E. Papantonopoulos and B. Wang, Entanglement Entropy as a Probe of the Proximity Effect in Holographic Superconductors, JHEP 05 (2014) 130 [arXiv:1401.5720] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    T. Albash and C.V. Johnson, Holographic Studies of Entanglement Entropy in Superconductors, JHEP 05 (2012) 079 [arXiv:1202.2605] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Xiao-Mei Kuang
    • 1
    • 2
  • Eleftherios Papantonopoulos
    • 1
    • 3
  • Bin Wang
    • 4
  • Jian-Pin Wu
    • 5
    • 6
  1. 1.Department of PhysicsNational Technical University of AthensAthensGreece
  2. 2.Instituto de FísicaPontificia Universidad Católica de ValparaísoValparaísoChile
  3. 3.CERN - Theory DivisionGeneva 23Switzerland
  4. 4.IFSA Collaborative Innovation Center, Department of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  5. 5.Department of Physics, School of Mathematics and PhysicsBohai UniversityJinzhouChina
  6. 6.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations