Advertisement

Three-point correlators from string amplitudes: mixing and Regge spins

Open Access
Regular Article - Theoretical Physics

Abstract

This paper has two parts. We first compute the leading contribution to the strong-coupling mixing between the Konishi operator and a double-trace operator composed of chiral primaries by using flat-space vertex operators for the string-duals of the operators. We then compute the three-point functions for protected or unprotected scalar operators with higher spin operators on the leading Regge trajectory. Here we see that the nontrivial spatial structures required by conformal invariance arise naturally from the form of the polarization tensors in the vertex operators. We find agreement with recent results extracted from Mellin amplitudes for four-point functions, as well as with earlier super-gravity calculations. We also obtain some new results for other combinations of operators.

Keywords

Supersymmetric gauge theory Superstrings and Heterotic Strings AdS-CFT Correspondence Strong Coupling Expansion 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    R. Roiban and A. Volovich, Yang-Mills correlation functions from integrable spin chains, JHEP 09 (2004) 032 [hep-th/0407140] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    L.F. Alday, J.R. David, E. Gava and K.S. Narain, Structure constants of planar N = 4 Yang-Mills at one loop, JHEP 09 (2005) 070 [hep-th/0502186] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    L.F. Alday, J.R. David, E. Gava and K.S. Narain, Towards a string bit formulation of N = 4 super Yang-Mills, JHEP 04 (2006) 014 [hep-th/0510264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring Three-Point Functions and Integrability, JHEP 09 (2011) 028 [arXiv:1012.2475] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring Three-Point Functions and Integrability II. Weak/strong coupling match, JHEP 09 (2011) 029 [arXiv:1104.5501] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    N. Gromov, A. Sever and P. Vieira, Tailoring Three-Point Functions and Integrability III. Classical Tunneling, JHEP 07 (2012) 044 [arXiv:1111.2349] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Bissi, T. Harmark and M. Orselli, Holographic 3-Point Function at One Loop, JHEP 02 (2012) 133 [arXiv:1112.5075] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    I. Kostov, Three-point function of semiclassical states at weak coupling, J. Phys. A 45 (2012) 494018 [arXiv:1205.4412] [INSPIRE].MathSciNetMATHGoogle Scholar
  10. [10]
    V. Kazakov and E. Sobko, Three-point correlators of twist-2 operators in N = 4 SYM at Born approximation, JHEP 06 (2013) 061 [arXiv:1212.6563] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    N. Gromov and P. Vieira, Tailoring Three-Point Functions and Integrability IV. Theta-morphism, JHEP 04 (2014) 068 [arXiv:1205.5288] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    O. Foda, Y. Jiang, I. Kostov and D. Serban, A tree-level 3-point function in the SU(3)-sector of planar N = 4 SYM, JHEP 10 (2013) 138 [arXiv:1302.3539] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Vieira and T. Wang, Tailoring Non-Compact Spin Chains, JHEP 1410 (2014) 35 [arXiv:1311.6404] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Caetano and T. Fleury, Three-point functions and su (1|1) spin chains, JHEP 09 (2014) 173 [arXiv:1404.4128] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y. Jiang, I. Kostov, F. Loebbert and D. Serban, Fixing the Quantum Three-Point Function, JHEP 04 (2014) 019 [arXiv:1401.0384] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Zarembo, Holographic three-point functions of semiclassical states, JHEP 09 (2010) 030 [arXiv:1008.1059] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    M.S. Costa, R. Monteiro, J.E. Santos and D. Zoakos, On three-point correlation functions in the gauge/gravity duality, JHEP 11 (2010) 141 [arXiv:1008.1070] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    R.A. Janik, P. Surowka and A. Wereszczynski, On correlation functions of operators dual to classical spinning string states, JHEP 05 (2010) 030 [arXiv:1002.4613] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    E.I. Buchbinder and A.A. Tseytlin, Semiclassical correlators of three states with large S 5 charges in string theory in AdS 5 × S 5, Phys. Rev. D 85 (2012) 026001 [arXiv:1110.5621] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Bissi, C. Kristjansen, D. Young and K. Zoubos, Holographic three-point functions of giant gravitons, JHEP 06 (2011) 085 [arXiv:1103.4079] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    G. Georgiou, SL(2) sector: weak/strong coupling agreement of three-point correlators, JHEP 09 (2011) 132 [arXiv:1107.1850] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    R.A. Janik and A. Wereszczynski, Correlation functions of three heavy operators: The AdS contribution, JHEP 12 (2011) 095 [arXiv:1109.6262] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    Y. Kazama and S. Komatsu, On holographic three point functions for GKP strings from integrability, JHEP 01 (2012) 110 [arXiv:1110.3949] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    Y. Kazama and S. Komatsu, Wave functions and correlation functions for GKP strings from integrability, JHEP 09 (2012) 022 [arXiv:1205.6060] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    Y. Kazama and S. Komatsu, Three-point functions in the SU(2) sector at strong coupling, JHEP 03 (2014) 052 [arXiv:1312.3727] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    L.F. Alday and A. Bissi, Higher-spin correlators, JHEP 10 (2013) 202 [arXiv:1305.4604] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    Z. Bajnok, R.A. Janik and A. Wereszczynski, HHL correlators, orbit averaging and form factors, JHEP 09 (2014) 050 [arXiv:1404.4556] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.A. Minahan, Holographic three-point functions for short operators, JHEP 07 (2012) 187 [arXiv:1206.3129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    T. Bargheer, J.A. Minahan and R. Pereira, Computing Three-Point Functions for Short Operators, JHEP 03 (2014) 096 [arXiv:1311.7461] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    O. Schlotterer, Higher Spin Scattering in Superstring Theory, Nucl. Phys. B 849 (2011) 433 [arXiv:1011.1235] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091 [arXiv:1209.4355] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT(d)/AdS(d+1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D = 4, N = 4 SYM at large-N , Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Extremal correlators in the AdS/CFT correspondence, hep-th/9908160 [INSPIRE].
  36. [36]
    T. Klose and T. McLoughlin, A light-cone approach to three-point functions in AdS 5 × S 5, JHEP 04 (2012) 080 [arXiv:1106.0495] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    F.A. Dolan and H. Osborn, Superconformal symmetry, correlation functions and the operator product expansion, Nucl. Phys. B 629 (2002) 3 [hep-th/0112251] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    N. Beisert, BMN operators and superconformal symmetry, Nucl. Phys. B 659 (2003) 79 [hep-th/0211032] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    J.A. Minahan and K. Zarembo, The Bethe ansatz for \( \mathcal{N}=4 \) super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    G. Mack, Convergence of operator product expansions on the vacuum in conformal invariant quantum field theory, Commun. Math. Phys. 53 (1977) 155.ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    G. Sotkov and R. Zaikov, Conformal invariant two and three-point functions for fields with arbitrary spin, Rept. Math. Phys. 12 (1977) 375.ADSCrossRefGoogle Scholar
  42. [42]
    H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    A. Sagnotti and M. Taronna, String Lessons for Higher-Spin Interactions, Nucl. Phys. B 842 (2011) 299 [arXiv:1006.5242] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    G. Arutyunov and S. Frolov, Some cubic couplings in type IIB supergravity on AdS 5 × S 5 and three point functions in SYM(4) at large-N , Phys. Rev. D 61 (2000) 064009 [hep-th/9907085] [INSPIRE].ADSGoogle Scholar
  46. [46]
    C. Beem, L. Rastelli and B.C. van Rees, The \( \mathcal{N}=4 \) Superconformal Bootstrap, Phys. Rev. Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    C. Beem, L. Rastelli, A. Sen and B.C. van Rees, Resummation and S-duality in \( \mathcal{N}=4 \) SYM, JHEP 04 (2014) 122 [arXiv:1306.3228] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    L.F. Alday and A. Bissi, Modular interpolating functions for N = 4 SYM, JHEP 07 (2014) 007 [arXiv:1311.3215] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations